Course detail
Industrial Automation
FSI-G0AAcad. year: 2018/2019
The aim of the course is to acquaint students with the main concepts of industrial automation and control systems in relation to the Industry 4.0.
The first part of the course focuses on logic control and its application in contemporary control systems. It will be explained in the introduction and use of logic functions, including its interpretation of elements of sequential and combinational circuits.
The second part includes a basic knowledge of linear continuous control systems. There will be resolved problems through analysis of impulse transfer function and frequency methods.
The third part of the course covers the basics of digital control and their applications.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
The exam is written and oral. In the written part a student compiles main themes which were presented during the lectures. The oral part of the exam will contain discussion of tasks and possible supplementary questions.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
OGATA, Katsuhiko. Modern control engineering. 4th ed. Upper Saddle River, N.J: Prentice-Hall, 2002. ISBN 0130432458. (EN)
RICHARD C. DORF a ROBERT H. BISHOP. Modern control systems. 11th ed. New Jersey: Pearson Education, 2008. ISBN 0132067102. (EN)
ROBERT H. BISHOP. The mechatronics handbook: fundamentals and modeling. 2nd ed. Boca Raton, FL: CRC Press, c2008. ISBN 978-0-8493-9258-0. (EN)
ŠVARC, Ivan. Automatické řízení. Vyd. 2. Brno: Akademické nakladatelství CERM, 2011. ISBN 978-80-214-4398-3. (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Combinatorial and sequential logical circuits, programmable logic controllers.
3. Continuous linear regulation circuit, external and internal systems description, Laplace transform, differential equation.
4. Impulse response function and impulse characteristic, unit step response function and unit step characteristic, classification of regulation circuits.
5. Frequency transfer, frequency response in complex plane and logarithmic coordinates, poles and zeroes, block diagram algebra.
6. Controllers, regulation circuit, characteristic equation (stability), basic methods for controller tuning.
7. Stability of linear feedback systems.
8. Quality of regulation, tuning of controllers.
9. Discrete regulation circuit, sampling circuit (A-D converter), data-hold circuit (D-A converter), Z-transform, difference equation.
10. Z-transfer, discrete impulse response function and characteristic, discrete unit step response function and characteristic, frequency transfer, frequency characteristic in complex plane.
11. Block diagram algebra of discrete systems, digital controllers (positional and incremental algorithm), stability of discrete regulation circuit (general condition).
12. Using of digital controller in control systems.
13. Instrumentation of control systems.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Logic control (truth table, minimisation, combinatorial logical circuits - simulation).
3. Logic control (sequential logical circuits – simulation).
4. Logic control (exemplary model).
5. Continuous linear control (differential equation, transfer, impulse response and unit step response function, impulse and unit step characteristic, simulation).
6. Continuous linear control (frequency transfer, frequency characteristic in complex plane, frequency characteristics in logarithmic coordinates, simulation).
7. Continuous linear control (block diagram algebra, controllers, simulation).
8. Continuous linear control (regulation circuit, stability of regulation circuit, simulation).
9. Continuous linear control (Ziegler-Nichols method, stability criteria of regulation circuit, simulation).
10. Continuous linear control (accuracy of regulation, quality of regulation, simulation).
11. Example in the field of continuous linear control.
12. Test in written form.
13. Credit, reparation of test.