Course detail
Theory of Metal-forming
FSI-HTAAcad. year: 2018/2019
Complex engineering solutions of the technological processes of metal-forming are based on the theory of plasticity and theory of metal-forming with systems of computer support. The content of the course starts from selected chapters of the physical essence of plastic strain, formability of metals and alloys, fundamentals of mathematical theory of plasticity, and experimental/analytical methods for the theoretical solution of metal-forming processes. The course provides the basic knowledge of and skills in mathematically describing metal-forming processes while applying the physical, chemical, mechanical and thermodynamic principles of the transition of metallic bodies from elastic into plastic state in the course of their plastic deformation into the required shape. The course also addresses the problem of determining the loading of metal-forming tools and machines, carries out analyses of deformation, establishes critical strain values and offers an introduction to computer-aided modelling of metal-forming processes.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
The exam is public, it will have written preparation and oral part. It is classificated to the ECTS grading scale.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Attendance in exercises is compulsory.
The attendance to the seminar is regularly checked and the participation in the lesson is recorded.
Absence from laboratory exercises is compensated for via make-up topics of exercises and consultations.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
LANGE, Kurt. Handbook of metal forming. New York: McGraw-Hill, c1985, 900 p. ISBN 00-703-6285-8. (EN)
MARCINIAK, Z. Mechanics of sheet metal forming. Oxford: Butterwort-Heinemann, 2002. ISBN 0-7506-5300-0. (EN)
Metals handbook, Ninth Edition: Forming and Forging. Vol 14. Metals Park, Ohio: American Society for Metals, c1988, 17 v. ISBN 0-87170-007-7. (EN)
MIELNIK, Edward M. Metalworking science and engineering. New York: McGraw-Hill, c1991, 976 p. McGraw-Hill. ISBN 00-704-1904-3. (EN)
Recommended reading
FOREJT, Milan a Miroslav PÍŠKA. Teorie obrábění, tváření a nástroje. Brno: A N CERM, 2006. ISBN 80-214-2374-9. ( dotisk 2008, 2012, 2015, 2018) (CS)
FOREJT, Milan. Teorie tváření, Návody do cvičení. Studijní opora FSI VUT, říjen 2004 (novela 2020) (CS)
FOREJT, Milan. Teorie tváření. Učební texty. 2. vyd. VUT Brno : AN CERM, s.r.o. Brno, 2004. 167 s. ISBN 80-214-2764-7. (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Resistance to deformation, effect of basic parameters. Deformation work and force.
3. Summary of the fundamentals of mathematical theory of plasticity. Partial theories.
4. Conditions of the appearance of plastic deformation. Analysis of the deformation process.
5. Analytical and analytical-experimental methods for solving metal-forming processes.
6. Upsetting between parallel planes, the Siebel and the Unksov solutions.
7. Forward extrusion, stress and strain analysis.
8. Backward extrusion, solution after Dipper, Sachs and Siebel.
9. Die forging, solution after Tomlen, Gubkin, Gelei and Storozhev
10. Bending of thin bars and wide bands.
11. Deep drawing, stress and strain, calculation after Sachs and Sofman.
12. Method of resistance to deformation. Theory of small elastic-plastic deformations.
13. State of stress in free and closed shear and in precise shearing.