Course detail
Design of Process and Power Systems
FSI-KNPAcad. year: 2018/2019
Students with a practical and modern way will become familiar with the problematics of the designing of process and energy systems currently applied in engineering offices. From the wide variety of activities that fall within the designing of process and power system the attention of lectures and seminars is focused on the most important areas of technical and technological design and its impact on the environment. Specifically, attention is focused on methods and tools used for the design of process and energy systems in the conceptual design phase and feasibility studies and on the methods and tools used for the design of process and energy systems at the basic design stage of given system and its individual equipment. Linking the theoretical and practical part of the course will be ensured in the maximum extent by using a support of the latest educational version of professional software systems for design of process and energy systems and its individual equipment (eg. ChemCAD, HTRI, GateCycle, etc.).
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
2. Mastering the use of professional software systems for designing and related competent practice of process engineer.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Compulsory and active participation in seminars and understanding of problematice and preparing of the semestral paper.
Exam:
Student skills evaluation takes place in two stages:
1. Written part: Written tests and evaluation of the semestral paper. Upon receiving grade E or better from both the test and the semestral paper, a student proceeds to an oral part of exam.
2. Oral part: Following the results of tests, student demonstrate related theoretical knowledge in the design by the form of expert discussion with the teacher that shows the final evaluation of the student.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Theoretical parts are combined with the practice lesson demonstrating of computerized solution of partial problems.
Attendance at lectures is recommended. Attendance at seminars is compulsory and checked.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Finlayson B. A.; Introduction to Chemical Engineering Computing, John Wiley and Sons, Hoboken, 2006
VDI-Heat Atlas, 2nd edition, Springer-Verlag Berlin Heidelberg, 2010
White R. E., Subramanian V. R.; Computational Methods in Chemical Engineering with Maple, Springer-Verlag Berlin Heidelberg, 2010
Recommended reading
Kizlink, J.: Technologie chemických látek I. a II. díl, VUT Brno, 2001
Stehlík, P.: Termofyzikální vlastnosti, VUT Brno, 1992
VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen Editor: VDI-Heat Atlas, 2nd. edition, Springer-Verlag Berlin Heidelberg, 2010.
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Design of shell and tube heat exchangers.
3. Design of plain plate types heat exchangers.
4. Design of plate-and-frame types of heat exchangers.
5. Introduction to rectification of binary mixtures.
6. Design of apparatus for contacting gases and liquids.
7. Design of rectification and absorption columns.
8. Design of apparatus for separation of multicomponent mixtures.
9. Design of heat fransfer equipment with fluids phase changes
10. Combustion equipment for process and power industry - conceptual design.
11. Combustion equipment for process and power industry - detail design.
12. Start-up, operating and control of selected process and energy equipment.
13. Heat losses of process and energy equipment and design of insulation.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Process simulation using software ChemCad, introduction to software HTRI.
3. Shell and tube heat exchanger design using software HTRI for given process.
4. Plate and frame heat exchanger design using software HTRI for given process.
5. First part of design of system of rectification columns for the separation of ternary mixture using software ChemCad.
6. Second part of design of system of rectification columns for the separation of ternary mixture using software ChemCad.
7. Third part of design of system of rectification columns for the separation of ternary mixture using software ChemCad.
8. Completion part of design of system of rectification columns for the separation of ternary mixture using software ChemCad.
9. Design of reboiler or condensator using software HTRI for given process.
10. Introduction to software GateCycle and preparation of power system simulation scheme.
11. Simulation of power system using software GateCycle.
12. Design of economizer for steam boiler using HTRI software as part of power system.
13. Submitting of individual semester papers. Course-unit credit evaluation.