Course detail
Experimental Mechanics
FSI-REMAcad. year: 2018/2019
The course is concerned with the following topics: Fundamentals of methods of electrical measurement of mechanical quantities. Elaboration of continuous and discrete stochastic processes
in the time and the frequency domain. Methods for the determination of stresses and strains at a point and in a certain area of a body (especially resistance strain gages, reflection photoelasticity and brittle lacquers). Measurement of kinematic quantities, forces, torques and pressures.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Examination - combined (written and oral). In written part students have to prove knowledge of basic terms, important principles and their application; in the oral part the discussion over written part and records from laboratory exercises follows. None of these must be evaluated by the failing degree F.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Harris, C.M.: Shock and Vibration Handbook, McGraw Hill 1996
Kobayashi, A.S.: Handbook on Experimental Mechanics., Prentice Hall, New Jersey 1987
Recommended reading
Miláček, S.: Měření a vyhodnocování mechanických veličin, ČVUT Praha 2001
Vlk M. et al., Experimentální mechanika. VUT FSI 2003 (www.fme.vutbr.cz/opory)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Passive sensors of mechanical quantities.
3. Active sensors of mechanical quantities.
4. Continuous and discrete signals – methodology of their processing.
5. Digital signal filtering.
6. Devices for measurement of mechanical quantities.
7. Measurement of kinematic quantities.
8. Methods for determination of stresses and deformations of bodies.
9. Properties of resistance strain gages.
10. Criteria for optimal selection of strain gages.
11. Optical methods (photoelasticity, moiré, holography, specle.)
12. Brittle lacquers. Methods for measurement of residual stresses. Cracks detection.
13. Measurement of forces, torques and pressures.