Course detail
Fuzzy Sets and Applications
FSI-SFMAcad. year: 2018/2019
The course is concerned with the fundamentals of the fuzzy sets theory: operations with fuzzy sets, extension principle, fuzzy numbers, fuzzy relations and graphs, fuzzy functions, linguistics variable, fuzzy logic, approximate reasoning and decision making, fuzzy control, fuzzy probability. It also deals with the applicability of those methods for modelling of vague technical variables and processes, and work with special software of this area.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Zimmermann, H. J.: Fuzzy Sets Theory and Its Applications. Boston : Kluwer-Nijhoff Publishing, 1998. (EN)
Recommended reading
Novák, V.: Základy fuzzy modelování. Praha : BEN - technická literatura, 2000. (CS)
Talašová, J.: Fuzzy metody ve vícekriteriálním rozhodování a rozhodování. Olomouc : Univerzita Palackého, 2002. (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Operations with fuzzy sets (properties).
3. Operations with fuzzy sets (alfa cuts).
4. Triangular norms and co-norms, complements (properties).
5. Extension principle (Cartesian product, extension mapping).
6. Fuzzy numbers (definition, extension operations, interval arithmetic).7. Fuzzy relations (basic notions, kinds).
8. Fuzzy functions (basic orders, fuzzy parameter, derivation, integral).
9. Linguistic variable (model, fuzzification, defuzzification).
10. Fuzzy logic (multiple value logic, extension).
11. Approximate reasoning and decision-making (fuzzy environment, fuzzy control).
12. Fuzzy probability (basic notions, properties).
13. Fuzzy models design for applications.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Fuzzy sets (basic notions, properties).
3. Operations with fuzzy sets (properties, alfa cuts).
4. Triangular norms and co-norms, complements.
5. Extension principle of mapping.
6. Fuzzy numbers (extension unary and binary operations).
7. Fuzzy numbers and interval arithmetic.
8. Fuzzy relations (orders, operations).
9. Fuzzy functions with fuzzy parameter (derivation, integral).
10. Linguistic variable (operators, presentation).
11. Fuzzy logic (operations, properties).
12. Approximate reasoning and decision-making (fuzzy control).
13. Applications of fuzzy models.