Course detail
Optimization I
FSI-SOPAcad. year: 2018/2019
The course presents fundamental optimization models and methods for solving of technical problems. The principal ideas of mathematical programming are discussed: problem analysis, model building, solution search, and the interpretation of results. The course
mainly deals with linear programming (polyhedral sets, simplex method, duality) and nonlinear programming (convex analysis, Karush-Kuhn-Tucker conditions, selected algorithms). Basic information about network flows and integer programming is included as well as further generalizations of studied mathematical programs.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Bazaraa et al.: Nonlinear Programming, , Wiley 2012 (EN)
Dupačová et al.: Lineárne programovanie, Alfa 1990 (CS)
Klapka a kol.: Metody operačního výzkumu, VUT 2001 (CS)
Recommended reading
Charamza a kol.: Modelovací systém GAMS, MFF UK Praha, 1994 (EN)
Klapka a kol.: Metody operačního výzkumu, VUT, 2001 (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Visualisation, algorithms, software, postoptimization.
3. Linear programming (LP): Convex and polyhedral sets.
4. LP: Feasible sets and related theory.
5. LP: The simplex method.
6. LP: Duality, sensitivity and parametric analysis.
7. Network flows modelling.
8. Introduction to integer programming.
9. Nonlinear programming (NLP): Convex functions and their properties.
10. NLP: Unconstrained optimization and line search algorithms.
11. NLP: Unconstrained optimization and related multivariate methods.
12. NLP: Constrained optimization and KKT conditions.
13. NLP: Constrained optimization and related multivariate methods.
14. Selected general cases.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
Linear problems (2-7)
Special problems (7-8)
Nonlinear problems (9-13)
General problems (14)
Course participance is obligatory.