Course detail
Theoretical Mechanics
FSI-STMAcad. year: 2018/2019
Kinematic relations and quantities (position, velocity, acceleration) related to the motion of a point, a rigid body and an assembly of rigid bodies are discussed. Also dealt with is the kinematic solution of rectilinear motion, rotary motion, spherical motion and general motion. In the case of relative motion the corresponding kinematic quantities are given. Subsequently, basic terms of dynamics of a particle, mass-geometric characteristics of rigid bodies, dynamics of rigid body/assembly of rigid bodies are presented in terms of vectorial dynamics. The foundations of analytical dynamics are then explained. In the end the theory of vibration of mechanical systems with n degrees of freedom together with the foundations of gyratory vibration of shafts are delivered.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Meriam J.L.: Engineering Mechanics, John Wiley & Sons, 2003 (EN)
Slavík J., Stejskal V., Zeman V.: Základy dynamiky strojů (CS)
Recommended reading
Přikryl K.: Kinematika (CS)
Slavík J., Kratochvíl C.: Dynamika (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Special cases of rigid body motion: rotation about fixed axis, absolute general plane motion.
Special cases of rigid body motion in 3D:translation, spherical motion, general motion.
Analysis of relative motion, simultaneous rotations.
Dynamics of a particle, inertial and non-inertial reference systems.
Equations of motion for a system of particles. Moments of inertia, deviation moments.
Dynamics of general motion of rigid body. Dynamic solution to special cases of rigid body motion: translation, rotation, general plane, spherical and screwed motion respectively.
Dynamics of rigid body system.
Introduction to analytical mechanics. General equation of dynamics. Hamilton principle. Solution of stability problems.
Fundamentals of linear theory of vibration with 1 and n degree of freedom. Various kinds of damping.
Forced vibration.
Gyratory vibration of rotors with 1 and n degree of freedom.
Introduction to the nonlinear theory of vibration.
Exercise
Teacher / Lecturer
Syllabus
Translation, rotation about fixed axis and absolute general plane motion respectively of a rigid body.
Spherical motion and screwed motion of a rigid body.
Compound motion, simultaneous rotations, kinematics of transmissions.
Solution to the problems of particle dynamics.
Dynamics of a system of particles.
Dynamics of translation and rotation of a rigid body.
Dynamics of general plane motion and spherical motion of a rigid body.
Lagrangian equations.
Vibration of a system with 1 and n degrees of freedom., free vibration, damped vibration.
Forced vibration of a system with 1 and n degrees of freedom.
Gyratory vibration of shafts.
Examples of nonlinear vibration solution.