Course detail
Nanophotonics and Plasmonics
FSI-TNF-AAcad. year: 2018/2019
Principles of propagation of optical signals in nanostructures (e.g. devices and circuits) under diffraction limits, methods of their application. Surface Plasmon Polaritons (SPP) - the way, how to surpass diffraction limits. Generation, propagation and detection of SPP. Surface Plasmon Polaritons and metallic nanostructures - Plasmonics. Propagating SPP, their applications in sensorics. Localized SPP - local excitation of electromagnetic field, application in generation and detection of electromagnetic radiation, sensorics and local spectroscopy.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Kreibig U., Vollmer M.: Optical Properties of Metal Clusters, Springer Verlag, Berlin 1995. (EN)
Maier S. A.: Plasmonics: Fundamentals and Application, Springer 2007. (EN)
Recommended reading
Maier S. A.: Plasmonics: Fundamentals and Application, Springer 2007. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Localized Surface Plasmons (LSP): quasi-static approximation, beyond quasi-static approximation - Mie theory of scattering and absorption of electromagnetic radiation by a sphere, approximation to more general object shapes (including apertures and voids), methods of observation of LSP, coupling between LSP, application of LSP - resonant plasmonic antennas (local sources and detectors of electromagnetic radiation in visible and infrared spectral region), LSP and transition of light through an aperture, local enhancement electromagnetic field in vicinity of metallic particles or tips and antennas - surface enhanced Raman spectroscopy (SERS) and tips enhanced Raman spectroscopy (TERS), respectively, luminiscence induced by a metallic tip (STL), lithography.
Exercise
Teacher / Lecturer
Syllabus
Computer-assisted exercise
Teacher / Lecturer
Syllabus