Course detail
Solution of Basic Problems of Solids Mechanics by FEM
FSI-6KPAcad. year: 2018/2019
Students during lectures become familiar with the theoretical foundations of the finite element method, with the essence of numerical computational modelling and with fundamental practical knowledge, which are applied to typical problems of solid mechanics. Practical tasks are divided by 1D, 2D, and 3D level of geometry. Dominantly, the subject is focused on linear static structural analysis, but also an introduction to dynamic analyses and analyses of heat conduction will be presented. The above will be practiced in the ANSYS Workbench computing software. The necessary knowledge of the subject is: 1) ability to work with ANSYS Workbench software, 2) understanding of the correct level of the computational model (inclusion of essential variables), 3) analysis/assessment/verification of the obtained results, 4) theoretical basement of FEM.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
- active participation in seminars,
- good results in the written test of basic knowledge,
- individual preparation and presentation of seminar assignments.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Beam elements. Truss structure.
3. Beam elements. Frames.
4. Plane elements. Plane stress, plane strain and axisymmetric.
5. Theory of finite element method.
6. Solid and shell elements.
7. Creation of mesh, control of mesh density, influence of discretization on results.
8. Solution of dynamic problems - modal, harmonic and transient problems.
9. Introduction to program system ABAQUS.
10. Thermal conduction problems in ANSYS.
11. Programming macro (APDL).
12. Basic knowledge on the "art of modelling".
13. Hardware for FEM jobs.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Beam element. Truss.
3. Beam element. Beams, frames.
4. Plane elements (plane-stress and plane-strain).
5. Plane elements (axisymmetric body).
6. Solid and shell elements.
7. Connecting bodies, contact.
8. Solution of dynamic problems.
9. Solving of a given project under the supervision of lecturer.
10. Solving of a given project under the supervision of lecturer.
11. Solving of a given project under the supervision of lecturer.
12. Solving of a given project under the supervision of lecturer.
13. Presentation of Project work by students.