Course detail
Mathematics 2
FEKT-AMA2Acad. year: 2018/2019
Partial differentiation of real functions of several variables, limits, continuity, partial derivatives. Ordinary differential equations and systems, basic concepts, examples of use. Difference equations, basic concepts. Differential calculus in the complex domain, derivative, holomorphic functions. Integral calculus in the complex domain, Cauchy theorem, Cauchy formula, Laurent series, singular points, residue theorem. Laplace transform, convolution of functions. Fourier transform, relation to the Laplace transform, practical usage. Z transform, discrete systems, difference equations. Continuous-time signals, spectra of signals. Systems and their mathematical models. Solving of input-output equation using the Laplace transform. Impulse and frequency characteristic.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Ordinary differential equations and systems of differential equations. Basic concepts and foundations of qualitative theory (existence and uniqueness of solutions of ODE´s, stability). Linear differential equations of the n-th order with constant coefficients, stability of solutions.
3. Difference equations. Basic concepts and foundations of qualitative theory (existence and uniqueness of solutions of DE´s). Linear difference equations.
4. Functions of a complex variable, derivative of complex functions. Integral calculus in complex domain, Cauchy theorem, Cauchy formula.
5.Laurent series, singular points and their classification, residuum and residua-theorem.
6. Mathematical methods for description of signals. Distribution, harmonic functions, periodical functions and Fourier series.
7. Direct and inverse Fourier transformation. Grammar of transform. Applications.
8.Direct and inverse Laplace transformation. Connection with the Fourier transform. Grammar of transform.
9. Applications of the Laplace transform to solving of differential equations and their systems.
10. Direct and inverse Z-transformation. Using the Z-trasformations for solving of difference equations.
11. Signals and their classifications. Continuous-time signals, periodical and harmonic signal, aperiodical signals, spectra of signals.
12. Sytems - concept and cassification. Mathematical model of a continuous-time system and solving of the input-output equation by Laplace transform.Impulse and frequency characteristic.
13. Connections between systems - serial, parallel connection of systems, feedback. Stability of systems.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Kolářová, E.: Matematika 2, Sbírka úloh, FEKT VUT v Brně, 2009, s. 1-83. (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Ordinary differential equations and systems of differential equations. Basic concepts and foundations of qualitative theory (existence and uniqueness of solutions of ODE´s, stability). Linear differential equations of the n-th order with constant coefficients, stability of solutions.
3. Difference equations. Basic concepts and foundations of qualitative theory (existence and uniqueness of solutions of DE´s). Linear difference equations.
4. Functions of a complex variable, derivative of complex functions. Integral calculus in complex domain, Cauchy theorem, Cauchy formula.
5.Laurent series, singular points and their classification, residuum and residua-theorem.
6. Mathematical methods for description of signals. Distribution, harmonic functions, periodical functions and Fourier series.
7. Direct and inverse Fourier transformation. Grammar of transform. Applications.
8.Direct and inverse Laplace transformation. Connection with the Fourier transform. Grammar of transform.
9. Applications of the Laplace transform to solving of differential equations and their systems.
10. Direct and inverse Z-transformation. Using the Z-trasformations for solving of difference equations.
11. Signals and their classifications. Continuous-time signals, periodical and harmonic signal, aperiodical signals, spectra of signals.
12. Sytems - concept and cassification. Mathematical model of a continuous-time system and solving of the input-output equation by Laplace transform.Impulse and frequency characteristic.
13. Connections between systems - serial, parallel connection of systems, feedback. Stability of systems.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
Fundamentals seminar
Teacher / Lecturer
Syllabus