Course detail

Selected parts from mathematics I.

FEKT-BVPAAcad. year: 2018/2019

The aim of this course is to introduce the basics of calculation of local, constrained and absolute extrema of functions of several variables, double and triple inegrals, line and surface integrals in a scalar-valued field and a vector-valued field including their physical applications.
In the field of multiple integrals , main attention is paid to calculations of multiple integrals on elementary regions and utilization of polar, cylindrical and sferical coordinates, calculalations of a potential of vector-valued field and application of integral theorems.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Students completing this course should be able to:
- calculate local, constrained and absolute extrema of functions of several variables.
- calculate multiple integrals on elementary regions.
- transform integrals into polar, cylindrical and sferical coordinates.
- calculate line and surface integrals in scalar-valued and vector-valued fields.
- apply integral theorems in the field theory.

Prerequisites

The student should be able to apply the basic knowledge of analytic geometry and mathamatical analysis on the secondary school level: to explain the notions of general, parametric equations of lines and surfaces and elementary functions.
From the BMA1 and BMA2 courses, the basic knowledge of differential and integral calculus and solution methods of linear differential equations with constant coefficients is demanded. Especially, the student should be able to calculate derivative (including partial derivatives) and integral of elementary functions.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods include lectures and demonstration practical classes . Course is taking advantage of exercise bank and maplets on UMAT server.

Assesment methods and criteria linked to learning outcomes

The student's work during the semestr (written tests and project 15/15) is assessed by maximum 30 points.
Written examination is evaluated by maximum 70 points. It consist of seven tasks (one from extrema of functions of several variables (10 points), two from multiple integrals (2 X 10 points), two from line integrals (2 x 10 points) and two from surface integrals (2 x 10 points)).

Course curriculum

1) Differential calculus of functions of several variables, limit, continuity, derivative
2) Vector analysis
3) Local extrema
4) Constrained and absolute extrema
5) Multiple integral
6) Transformation of multiple integrals
7) Applications of multiple integrals
8) Line integral in a scalar-valued field.
9) Line integral in a vector-valued field.
10) Potential, Green's theorem
11) Surface integral in a scalar-valued field.
12) Surface integral in a vector-valued field.
13) Integral theorems.

Work placements

Not applicable.

Aims

The aim of this course is to introduce the basics of theory and calculation methods of local and absolute extrema of functions of several variables, double and triple integrals, line and surface integrals including applications in technical fields.
Mastering basic calculations of multiple integrals, especialy tranformations of multiple integrals and calculations of line and surface integrals in scalar-valued and vector-valued fields.
of a stability of solutions of differential equations and applications of selected functions
with solving of dynamical systems.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ŠMARDA, Z., RUŽIČKOVÁ, I.: Vybrané partie z matematiky, el. texty na PC síti.

Recommended reading

BRABEC, J., HRUZA, B.: Matematická analýza II, SNTL/ALFA, Praha 1986, 579s.
GARNER, L.E.: Calculus and Analytical Geometry. Brigham Young University, Dellen publishing Company, San Francisco,1988, ISBN 0-02-340590-2.
KRUPKOVÁ, V.: Diferenciální a integrální počet funkce více proměnných,skripta VUT Brno, VUTIUM 1999, 123s.

Classification of course in study plans

  • Programme EECC Bc. Bachelor's

    branch B-SEE , 2 year of study, summer semester, elective interdisciplinary
    branch B-TLI , 2 year of study, summer semester, elective interdisciplinary
    branch B-EST , 2 year of study, summer semester, elective interdisciplinary
    branch B-MET , 2 year of study, summer semester, elective interdisciplinary
    branch B-AMT , 2 year of study, summer semester, elective specialised

  • Programme IT-BC-3 Bachelor's

    branch BIT , 2 year of study, summer semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1.Some notions from differential calculus of a function of multi variables.
2.Multiple integrals.
3.Transformation of multiple integrals.
4.Improper multiple integrals.
5.Lines in Rn, undirected line integral.
6.Directed line integral, indenpedence on an
integrable way.
7.Surfaces in R3, undirected surface integral.
8.Orientation of a surface, directed surface
integral.
9.Integral theorems.
10.Systems of differential equations, elementary
methods of solving.
11.General methods of solving of differential
equations.
12.Solving of systems of differential equations
with selected rightside,stability of solutions.
13.Criterions of stability of solutions.