Course detail
Mathematics 2 for Audio Engineering
FEKT-JMA2Acad. year: 2018/2019
Calculus of the more variable functions.
Ordinary differential equations - basic terms, exact methods for differential equations of first order, linear differential equations and its applications.
Complex functions - basic notions, differential and integral calculus, Cauchy theorem, Laurent's series, residue theorem.
Fourier series and Fourier transform, Laplace transform, and its applications in electrotechnics. Z transform and application of its to difference equations. Introduce to numerical methods.
Basics of probability theory, random variable, law of large numbers. Introduce to mathematical statistics.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- use some analytical and numerical methods to solve differential equations
-expain the basic notions and methods of differential and integral calculus of complex functions
- use Laplace and Fourier transformation for solving differential and integral equations in physics and engineering
- use Z- transformation for solving discrete equations
- define the basic principles of numerical analysis
- use the methods of probability and statistics in concrete problems.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
up to 30 points from computer exercises and the other activities (2 projects and 2 written tests)
up to 70 points from examination paper.
For course-unit credit 10 points from the student's work during the semestr is required
Course curriculum
2. Ordinary differential equations, basic terms, exact methods for the equation of the 1. order
3. Linear differential equations.
4. Complex functions - basic terms and differential calculus.
5. Basic of integral calculus, Cauchy theorem.
6. Laurent's series, residue theorem.
7. Fourier series and Fourier transform.
8. Laplace transform, and its usage.
9. Z transform and application of its to difference equations .
10. Basic of numerical analysis and methods,.
11. Basic of probability.
12. Random variable.
13. Law of large numbers and basic of mathematical statistics.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Specifications of the controlled activities and ways of implementation are provided in annual public notice.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Hlavičková, I., Hliněná, D.: Matematika 3 - sbírka úloh z pravděpodobnosti (CS)
Chvalina, J., Svoboda, Z., Novák,M.: Matematika 2 (CS)
Kolářová, E.:MATEMATIKA 2 Sbírka úloh (CS)
Melkes, F., Řezáč, M.: Matematika 2(BMA2 et KMA2) (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Diferenciální rovnice – základní pojmy, analytické metody řešení rovnic 1. řádu.
3. Lineární diferenciální rovnice.
4. Funkce komplexní proměnné – základní pojmy a základy diferenciálního počtu.
5. Základy integrálního počtu, Cauchyho věta.
6. Laurentova řada, Cauchy reziduová věta věta.
7. Fourierovy řady a Fourierova transformace.
8. Laplaceova transformace a její užití.
9. Z transformace a její užití k řešení diferenčních rovnic.
10. Základy numerické matematiky a principy numerických metod
11. Základy pravděpodobnosti.
12. Náhodné veličiny.