Course detail
3D Modeling
FEKT-LTMSAcad. year: 2018/2019
Mastering the work through the electronic product definition method. As opposed to the classical way of Technological Preparation of Production, when the development of the product as a whole is carried out by several workgroups and minute co-ordination of the activities is necessary, this method represents a solution that connects the individual „isles“ into one logical whole from the form of the design to the connection with the production itself. The teaching in the created simultaneous environment, common work on one task. Simulating activities from practice, where the individual teams work together on one task, although they are not resident in the same place.
Simulating the technological preparation of production, analyis with the input of the simulation programs into the process of technological preparation of production, simulation of kinematics, finite element method, finite volume method, heat conductivity.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- Student will master the system SolidWorks:
• creating complex 3D volume models,
• creating 3D sets with the analyses of collisions, enjabements and the creating of animations in the *.avi format
• deriving the drawing documentation from a 3D volume part.
• masterds the basics of FlowSimulation on the created 3D volume parts in the area of calculations of cooling of electronic equipment.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
70 count - test in last semester
Course curriculum
Structure of the system, features, parametric modelling basics.
Geometric primitives and Boolean operations with 3D objects.
Profiles, applications of sketcher. Creation of 3D objects from 2D profiles.
Advanced 3D editing tools, connection with parametrisation.
Advanced editing of 3D models.
Parameters, variables, equations, meaning.
Basic terms (JCF, CVNC, simulator, CL data), environment setting, JCF management.
Preparation of semi-finished product. Tool management, setting up a tool library. Tool replacement. Coordinates seting. Machine adjustment.
Plane adjustment (working, feed, take out, reference, safety). Setting the speed of feed, tool insert, joining. JCF command-line editor.
Allowance setting, setting of initial position of the tool. Setting of tool trajectory display. Output setting. Simulation.
NC-code generation
Basics of simulation process
Preparation of a model for kinematics simulation
Simple kinematics task, collision check
A more complex kinematics task
Solution of a task by the finite element method and finite volume metod.
Solution of a task by the Electronic Product Definition method
Final test
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Parameters, variables, equations, solver - description and use.
Sketcher.
Assembly
Explicit modeller in relation to detailing.
Revision of basic terms and features of parametric and explicit modeller. NC-code generation methodology. Conversion of a parametric model into explicit. Basic terms (JCF, CVNC, simulator, CL data), environment setting, JCF management.
Basics of simulation process
Solution of a task by the end-element method
Solution of a task by the Electronic Product Definition method (MKP, kinematics, NC-code)
Other modules of CADDS5, brief presentation
Final test
Exercise in computer lab
Teacher / Lecturer
Syllabus
Geometric primitives and Boolean operations with 3D objects.
Advanced 3D editing tools, parametrisation.
Profiles, applications of sketcher. Creation of 3D objects from 2D profiles.
Assembly in the CAMU mode, students work together on the first assembly
Dimensioning, dimensioning style, association of dimensions.
Sections and cross-sections, creation, editing.
Features and their usage
NURBS and their usage