Course detail

Optimal Control and Identification

FIT-ORIDAcad. year: 2018/2019

Not applicable.

Language of instruction

Czech

Mode of study

Not applicable.

Learning outcomes of the course unit

Not applicable.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

Not applicable.

Specification of controlled education, way of implementation and compensation for absences

Not applicable.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

Orientační osnova výuky je uvedena níže. Témata přednášek budou upřesněna na úvodní lekci předmětu podle znalostí studentů. Na konci předmětu se předpokládá výuka formou seminářů a samostatných prezentací.
  1. Problémy optimálního řízení, statická a dynamická optimalizace, determinované, stochastické a adaptivní řízení, vymezení pojmů.
  2. Dynamická optimalizace, tvary funkce ztrát, okrajové podmínky a omezení, základy variačního počtu, Eulerova-Lagrangeova rovnice.
  3. Omezení ve tvaru nerovnic na řízení, Pontrjaginův princip minima.
  4. Dynamické programování, konstrukce funkce ztrát, rovnice Hamiltona-Jakobiho-Bellmana.
  5. Příklady optimálních systémů, lineární regulátor, konstrukce funkce ztrát. Riccatiho rovnice, lineární servomechanismus.
  6. Opakování a/nebo výklad - charakteristiky náhodných procesů, střední hodnota, disperse, korelace, kovariance, spektrální vyjádření, Wiener-Chinčinovy vztahy, Parcevalův teorém, Bílý a "barevný" šum, transformace náhodného signálu lineární soustavou, kmitočtová i časová oblast.
  7. Bayesovské odhady, funkce ztrát a riziko, aplikace na dynamické soustavy, obecný princip dynamické filtrace.
  8. Lineární dynamický (Kalmanův) filtr, odvození, přechod na diskrétní filtr, zobecnění lineárního dynamického filtru, Wienerův filtr.
  9. Současná identifikace parametrů soustavy a trajektorie, rozšířený stavový vektor, linearizovaný Kalmanův filtr, konstrukce vybraných nelineárních filtrů.
  10. Stochastické řízení, lineární kvadratická Gaussova úloha, spojitý a diskrétní stochastický stavový regulátor a servomechanismus.
  11. Adaptivní systémy, současná identifikace stavu a parametrů a řízení, nejčastější struktury adaptivních systémů.

Project

13 hod., compulsory

Teacher / Lecturer

Syllabus

Individuální projekty, jejichž výsledky budou prezentovány v závěru výuky předmětu formou semináře.

Guided consultation in combined form of studies

26 hod., optionally

Teacher / Lecturer