Course detail
Implementation of Communication Systems
FEKT-MPC-IKSAcad. year: 2020/2021
The course is oriented to the real implementation problems of radio transmitters and receivers of single- and multi-carrier communication signals. Its emphasis is on both the theoretical description of basic algorithms for communication signals processing (sample rate change, filtration, synchronization, equalization, etc.), as well as on their practical software implementation with the use of available hardware (fixed-point arithmetic, analysis of signal transmitted from front-end, etc.). During the computer laboratories, students will get hands-on experience with the implementation of various transceiver algorithms on real signals of analog (e.g. FM radio) as well as digital (e.g. OFDM according WiFi IEEE 802.11a, FSK, QPSK/QAM) systems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
- compose a simple program in MATLAB environment
- synthesize simple FIR filter (low-pass, high-pass, raised cosine)
- mathematically describe signals of basic digital modulations (PSK, QAM, OFDM)
- discuss the basic terminology of signal processing
- discuss the advantages and disadvantages of basic communication technologies
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
up to 70 points for exam (written 50 points + oral part 20 points)
The final exam consists of compulsory written and optional oral part. In order to procced for oral part, student has to get at least 20 points in the written part
Course curriculum
2. Number representation, fixed-point arithmetic, CORDIC algorithm.
3. Hardware and software resources for implementation of communication systems.
4. Metrics to evaluate communication signals quality - EVM, ACPR, vector analysis.
5. Integer resampling - interpolation and decimation.
6. Fractional resampling, Farrow interpolator.
7. Digital filters and their effective FPGA implementation, FIR and CIC filters.
8. Basic building blocks of digital transceivers - DDS, mixers, methods of FM signal demodulation.
9. Algorithms for time and frequency synchronization of single-carrier and multi-carrier (OFDM) signals, carrier synchronization.
10. Equalization of communication signals.
11. Effective implementation of DFT - radix 2/4, DIT/DIF, mixed/split-radix FFT.
12. Parameters of real RF front-ends, IQ imbalance, amplifier nonlinearity, phase noise, software compensation techniques
13. QR decomposition and its application in communication systems, singular decomposition for MIMO systems.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
TRETTER, S.A., Communication System Design Using DSP Algorithms, Springer, 2008. (EN)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Number representation, fixed-point arithmetic, CORDIC algorithm
3. Hardware and software resources for implementation of communication systems
4. Metrics to evaluate communication signals quality - EVM, ACPR, vector analysis
5. Integer resampling - interpolation and decimation
6. Fractional resampling, Farrow interpolator
7. Digital filters and their effective FPGA implementation, FIR and CIC filters
8. Basic building blocks of digital transceivers - DDS, mixers, methods of FM signal demodulation
9. Algorithms for time and frequency synchronization of single-carrier and multi-carrier (OFDM) signals, carrier synchronization
10. Equalization of communication signals
11. Effective implementation of DFT - radix 2/4, DIT/DIF, mixed/split-radix FFT
12. Adaptive methods in communication systems, dynamic spectrum allocation
13. QR decomposition and its application in communication systems
Exercise in computer lab
Teacher / Lecturer
Syllabus
4.-6. CORDIC algorithm, implementation of FM demodulator
7.-9. OFDM modem, simulation and implementation of full transceiver
10.-11. FSK modem in MATLAB environment
12.-13. Passive multistatic reception, TDOA method
Elearning