Course detail
Physics I
FAST-GB01Acad. year: 2018/2019
Physical quantities and equations, vector analysis in physics, kinematics and dynamics of a point mass, rectilinear motion and rotational motion, work, power and energy, impulse of force, momentum, momentum of force, angular momentum, the system of particles, rigid body, centre of mass, equilibrium, motion of a body, kinetic energy of a rigid body, moment of inertia, work and power of rotating body, the gravitational field, intensity and potential of a gravitational field, the motion of planets, the harmonic oscillator, proper vibrations, damped and forced vibrations, addition and analysis of vibrations, Doppler's effect and its applications.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
The student´s condition for gaining a credit is measurement of nine laboratory exercises and creating lab reports on-the-fly. Further, students must calculate twenty examples given by the teacher. The last condition is a successful pass of the final test in the form of examples. The exam consists of written part, which contains four examples and oral part with four theoretical questions. All topics come from the lectures. Both parts must be successfully finished.
Course curriculum
2. Dynamics of a point mass.
3. Equation for motion for inertial and non-inertial systems.
4. Work power and energy.
5. Impulse of force,momentum of force.
6. The system of particles,rigid body.
7. Dynamics of a rigid body,work, kinetic energy.
8. The gravitational field,intensity and potential.
9. The motions of planets.
10.The harmonic oscilator.
11.Damped and forced vibrations.
12.Addition and analysis of vibrations.
13.Mechanical waves, travelling wave and standing wave in a row of points, spatial waves, velocity of wave propagation in matter. Doppler's effect and its applications.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Koktavý B.: Mechanické kmity a vlnění. CERM Brno, 1999. (CS)
Koktavý B.: Mechanika hmotného bodu. VUTIUM Brno, 1998. (CS)
Šikula J.: Mechanika tuhých těles. CERM Brno, 2001. (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Dynamics of a point mass.
3. Equation for motion for inertial and non-inertial systems.
4. Work power and energy.
5. Impulse of force,momentum of force.
6. The system of particles,rigid body.
7. Dynamics of a rigid body,work, kinetic energy.
8. The gravitational field,intensity and potential.
9. The motions of planets.
10.The harmonic oscilator.
11.Damped and forced vibrations.
12.Addition and analysis of vibrations.
13.Mechanical waves, travelling wave and standing wave in a row of points, spatial waves, velocity of wave propagation in matter. Doppler's effect and its applications.
Exercise
Teacher / Lecturer
Syllabus
Week 2 first laboratory measurement tasks according to the schedule
Week 3 following measurements according to schedule and commit the previous measurements and calculated examples
Week 4 following measurements according to schedule and commit the previous measurements and calculated examples
Week 5 following measurements according to schedule and commit the previous measurements and calculated examples
Week 6 following measurements according to schedule and commit the previous measurements and calculated examples
Week 7 consultation, corrections, measurement of errorneous exercises
Week 8 following measurements according to schedule and commit the previous measurements and calculated examples
Week 9 following measurements according to schedule and commit the previous measurements and calculated examples
Week 10 following measurements according to schedule and commit the previous measurements and calculated examples
Week 11 following measurements according to schedule and commit the previous measurements and calculated examples
Week 12 following measurements according to schedule and commit the previous measurements and calculated examples
Week 13 exam and submission of the minutes of the previous measurements, credit
Laboratory exercises:
Radius of curvature of spherical surfaces and dioptric power as found by means of the spherometer
Surface area as determined by calculation and with a planimeter
Density of solids as determined by the direct method and the hydrostatic balance
Modulus of elasticity in tension as determined by direct method
Modulus of elasticity in tension as measured tensometrically and mechanically by static method from deflection
Modulus of elasticity in tension as determined by oscillations of a bar
Modulus of elasticity in shear as determined by direct method
Modulus of elasticity in shear as determined by dynamic method
Local acceleration of gravity as determined by reversion pendulum
Determining the moment of inertia from the physical pendulum’s swing period
Moment of inertia as determined by torsial vibration