Course detail
Design of Electronic Devices
FEKT-BPC-NEZAcad. year: 2019/2020
The course is strongly oriented on practical knowledge. Students will learn the whole design flow of a typical electronic device from specification up to realization using off-the-shelf EDA and CAD tools. All the design steps are described, explained and demonstrated on examples. For every part of the design process typical recent software tools are introduced. Special attention is given to power supply subsystem design with regard to recent trends in this area (switch mode power supplies, resonant converters, battery power, energy harvesting). Students will simulate elementary circuits of power supplies, perform its design using recent software tools, design its PCB and export manufacturing outputs.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- select and use EDA and CAD tools for electronics design
- analyze requirements on an electronic system and propose its architecture
- describe parasitic properties of real electronic components and evaluate their impact on power supply properties
- compare properties (qualities) of different electronic components and choose appropriate on for target application
- explain functionality of both linear and switched mode power supplies
- choose suitable power supply topology (both linear and switched) according to the design needs
- calculate values of and requirements on basic components of power a supply
- design a protection and cooling for a power supply
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Electronic system architecture, component selection
3. Printed circuit boards
4. Resistors and capacitors - practical properties, selection
5. Inductors and transformers - practical properties, selection, design
6. Discrete semiconductors - practical properties, selection
7. Voltage references, parametric stabilizers
8. Linear regulators, feedback
9. Non-isolated switched-mode power supplies
10. Isolated switched-mode power supplies
11. Bridge converters, high efficiency converters
12. Power factor correctors, protection and cooling of power supplies
13. Autonomous power supplies
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
VRBA, K.; HANÁK, P. Vybrané problémy konstrukce elektronických přístrojů pro integrovanou výuku VUT a VŠB- TUO. Elektronická skripta. Technická 12, 616 00 Brno: Vysoké učení technické v Brně, FEKT, UTKO, 2014. s. 1-110. ISBN: 978-80-214-5071- 4.
WILLIAMS, T. EMC for Product Designers, 4th Edition. Boston: Newnes, 2007. 512 p. ISBN: 978-0750681704
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Electronic system architecture, component selection
3. Printed circuit boards
4. Resistors and capacitors - practical properties, selection
5. Inductors and transformers - practical properties, selection, design
6. Discrete semiconductors - practical properties, selection
7. Voltage references, parametric stabilizers
8. Linear regulators, feedback
9. Non-isolated switched-mode power supplies
10. Isolated switched-mode power supplies
11. Bridge converters, high efficiency converters
12. Power factor correctors, protection and cooling of power supplies
13. Autonomous power supplies
Exercise in computer lab
Teacher / Lecturer
Syllabus
2. Electronic circuit simulation 1: DC-DC converter
3. Individual project - specification
4. PCB design tutorial 1
5. PCB design tutorial 2
6. Individual work on project
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Reference voltage and current sources
3. Basic thermal and EMC analysis of an electronic design
4. Electronic device assembly and first power-up
5. DC-AC and AC-DC converters
Elearning