Course detail
Control of Dynamic Systems
FEKT-MRDSAcad. year: 2019/2020
The course deepens the knowledge of Systems Theory and Control Theory I. There are presented linearization method and engineering methods for synthesis of both continuous and discrete control systems. Nonlinear systems are analyzed by the phase plane method and harmonic linearization. The exercises are applied MATLAB, Simulink Toolbox CONTROL .
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- to apply mathematical description of nonlinear dynamic systems in MATLAB SIMULINK
- to calculate by linearization of nonlinear systems and applies it in MATLAB SIMULINK
- to desingn a regulation for continuous nonlinear systems (DC motor with separate excitation, asynchronous motor)
- to apply the phase plane in solving discrete nonlinear systems, in particular relay controllers
- to analyze discrete systems using harmonic linearization
- to desingn a simple fuzzy controller PSD (Simulink)
Prerequisites
- Apply differential equations for electromechanical systems in both the time domain and in the operator's shape
- The theory of linear systems, ie, the transfer function, state matrix, feedback systems - analysis (accuracy, stability), the synthesis of PID controller
- Operate the software tool MATLAB SIMULINK
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Linearization of the model. The solution to your computer.
3. State space control with observer.LQR regulators.
4.The state space model of synchronous motor.
5. The state space model of asynchronous motor.Vector control.
6. Synthesis of complex regulatory systems.
7. Digital control systems. Digital filtering.
8. Method of phase plane.
9. Relay controllers
10. Controllers in sliding mode.
11. Method of harmonic linearization.
12. Fuzzy control
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Compensation of an absence at laboratory after lecturer's recommendat
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Schonfeld R.:Digitale Regelung elektrische Antriebe,Dr. Alfred Huthig Heidelberg 1988
Zboray L., Ďurkovský F.:Stavové riadenie elektrických pohonov,FEI Košice 1995
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Numerical integration of state space equation.Program SIMULINK
Linearization of model.Computer solution.
State space model of synchronous and induction machine.Vector control of them.
Design-methods of feedback systems.
Design-methods of branched systems.
Digital control systems.Digital filtering.
Method of harmonic linearization.
Sliding mode regulators.
Method of harmonic linearization.
State feedback control with an observer.LQR regulators
Adaptive observer and Kalman estimator.
Neural networks and fuzzy systems.
Fundamentals seminar
Teacher / Lecturer
Syllabus
Method of harmonic linearization
Design-methods for regulators of induction machine.
Nonliner regulators.
Validation
Exercise in computer lab
Teacher / Lecturer
Syllabus
Simulation of induction machine.
State space model of synchronous machine.Vector control of them.
Method of harmonic linearization
Desingn and simulation of LQR regulators.
Simulation of sliding mode regulators
Nonliner regulators.
Fuzzy control.