Course detail

Electrical Power Generation

FEKT-CVEEAcad. year: 2019/2020

The subject makes students familiar with the problems of the conversion of different forms of energy from natural sources and the technological processes of the conversion in thermal, nuclear and hydroelectric power plants.

Language of instruction

English

Number of ECTS credits

6

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Learning outcomes of the course unit

Graduate of this course is able to:
- Discuss the advantages and disadvantages of energy sources
- Define and explain the fundamental terms of energy
- Describe the full technology of thermal power plants (condensing plants, gas plants, heating plants, combined cycle, cogeneration units)
- Explain the principles of nuclear reactions
- Discuss the advantages and disadvantages of different types of nuclear reactors
- Explain the principle of hydropower
- Defining the principles of operation of electrical generators

Prerequisites

The subject knowledge on the secondary school level is required and basic knowledge of Thermomechanics.
Students must be able to explain and clarify the following issues:
- Basic thermal processes
- Thermal cycle of gas turbine
- Fundamental laws of thermodynamics
- Thermodynamic properties of gases

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.
Teaching consists of lectures, laboratories and numerical exercises. The communication platform of the course is on e-learning. Students pass five laboratory exercises.

Assesment methods and criteria linked to learning outcomes

Point scoring of written and oral examination is held under the rules of FEEC.
During the semester, students are obliged to pass four control written tests, laboratory tasks and voluntary individual tasks. Requirements to get the credit are to obtain at least 20 points from 40 possible and NONE of the required activities (tests, laboratory tasks) is evaluated with 0 points.
The final exam is evaluated by up to 60 points and is divided into written (arithmetical problems - 20 points) and an oral part (40 points). Necessary requirement to pass the examination is to obtain at least 12 points from the written part and at least 20 points from the oral part.

Measures COVID-19: Examination of the course will be conducted by distance method, according to the instructions on the e-learning course.

Course curriculum

Lectures:

1. Energy sources, electric power generation in the Czech Republic, the basic energy concepts and terminology
2. Condensing power plants, thermal cycle, technological circuits and equipment - calculations of thermal cycles
3. Increasing the efficiency of thermal power plants (reheating, overheating, regeneration)
4. Combined production of electricity, the combustion turbine power plant
5. Effect of thermal power plants on the environment
6. Possibility of release of nuclear energy, basic concepts - elementary calculations of nuclear reactions
7. Types of nuclear reactors, nuclear power plant technology diagram - operational calculations of nuclear power plants
8. Nuclear safety, fuel cycle, nuclear power plants impact on the environment
9. Energy balance and energy utilization of water flows - basic hydroelectric calculations
10. Distribution and structure of hydraulic power plants, design and scheme of hydraulic power plant - operating hydraulic power plant calculations
11. Electric power scheme, power plant internal load
12. Alternators in thermal, nuclear and hydraulic power plants
13. Excitation systems of synchronous generators, new technologies in generation of electric power and thermal energy

Practice of professional basis:

1. Load diagram - the load characteristics, curve of load duration, the integral curve
2. Basic calculations of thermal cycle with condensing and back pressure turbine
3. Heat balance of cycle with condensing extraction turbine, steam reheating and overheating
4. Calculation of regeneration thermal cycle
5. Basic calculations of nuclear reactions
6. Hydraulic power plants calculations

Laboratory tasks:

1. Analysis of the dependence of active and reactive power on changes of the frequency of a synchronous machine in an isolated network
2. Operating characteristics of synchronous generator working to stable network
3. Simulation of the operating characteristics of wind turbine with asynchronous generator
4. Operating characteristics of synchronous power source working to an isolated network
5. Measurement of synchronous machine parameters (short and open circuit conditions)
6. Analysis of operational conditions of cogeneration unit
7. Excursion to the thermal power plant (presentation of the process circuit)

Work placements

Not applicable.

Aims

The objective of the subject is to give students profound information concerning electrical power generation of primary sources.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Energy Science - principles, technologies, and impacts, John Andrews & Nick Jelley, ISBN: 978-0-19-928112-1 (EN)
Standard Handbook of Powerplant Engineering, Thomas C. Elliott, ISBN: 0-07-019435-1 (EN)

Recommended reading

Power Generation Handbook - selection, applications, Operation, and maintenance, Philip Kiameh, ISBN:0-07-139604-7 (EN)

Elearning

Classification of course in study plans

  • Programme EECC Bc. Bachelor's

    branch BC-SEE , 2 year of study, summer semester, compulsory

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

Main technological circuits and main technological equipment of a thermal power plant
Operation of technological equipment,operation charakteristics
Basic principles of steam boiler and steam turbine control
Power plant influence on the environment
Types of nuclear power plants and nuclear reactors
Nuclear power plants with pressurized water reactors

Fundamentals seminar

12 hod., optionally

Teacher / Lecturer

Syllabus

Thermal balance calculation of a thermal power plant with a condensing turbine
Basic calculations concerning the theory of nuclear reactors, reactor power, basic hydrologic calculations

Laboratory exercise

14 hod., compulsory

Teacher / Lecturer

Syllabus

Synchronous machine operation
Power factor compensation of an asynchronous generator
Electromechanic protective devices of an alternator
Digital protective devices of an alternator
Parallel operation of alternators

Elearning