Course detail

Electronic Circuits Theory

FEKT-NTEOAcad. year: 2019/2020

Students become familiar with principles and application of basic matrix methods (based on Kirchhoff´s equations, method of the current loops, method of the nodal voltages) and its modifications (linear transformations, method of disabled row, method of stamps). Further, important questions involving noise, sensitivity and tolerance analysis of the electronic circuits will be addressed. Finally, the problems with feedback loops and system stability, oscillation conditions and methods for solving the nonlinear electronic networks will be solved.

Language of instruction

English

Number of ECTS credits

7

Mode of study

Not applicable.

Learning outcomes of the course unit

The graduate is able (1) apply matrix methods to the analysis of the linearized circuits with active elements, (2) numerically and graphically solve nonlinear networks, (3) use computer to analyze and design amplifiers, filters, oscillators and similar electronic circuits with lumped parameters.

Prerequisites

Pre-requisites are fundamental knowledge of mathematics (handling with vectors and matrices, solving system of equations, derivation and integration) and electronics (Ohm’s law, Kirchhoff’s laws).

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Techning methods include lectures, computer laboratories and practical laboratories. Course is taking advantage of e-learning (Moodle) system. Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

During teaching period students can obtain 20 points for the activity in computer lessons and 20 points for particular successes in lab. The final epistolary test is honored by 60 points.

Course curriculum

1. Fundamental laws and theorems in electronic circuits
2. Network functions and parameters
3. Matrix methods for solving linearized circuits with regular elements, part I
4. Matrix methods for solving linearized circuits with regular elements, part II
5. Matrix methods for solving linearized circuits with irregular elements, part I
6. Matrix methods for solving linearized circuits with irregular elements, part II
7. Signal flow graphs as a tool for solving linearized electronic circuits
8. Sensitivity and tolerance analysis of the electronic circuits
9. Noise analysis of the electronic circuits
10. Synthesis of the passive two-terminal devices
11. Electronic circuit as dynamical system, feedback loop and stability
12. Methods for solving nonlinear circuits, chaos in circuits
13. Design of the active devices on chip (visiting lecturer from ON-Semiconductor)

Work placements

Not applicable.

Aims

Lectures are aimed to area of the analytical methods for solving linearized circuits, numerical approaches dedicated to deal with nonlinear networks, utilization of personal computer for analysis and synthesis of the various types of the electronic circuits and other selected questions from circuit theory.

Specification of controlled education, way of implementation and compensation for absences

Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

K.Vrba, F.Kouřil: Non-linear and parametric circuits, Ellis Horwood Ltd., Chichester, 1988 (EN)

Recommended reading

Ch. A. Desoer, E. S. Kuh:Basic circuit theory.McGraw-Hill, New York, 1969 (EN)
J. Vlach, K. Singhal: Computer methods for circuit analysis and design. VAN, New York, 1994 (EN)

Classification of course in study plans

  • Programme EECC-MN Master's

    branch MN-TIT , 1 year of study, winter semester, elective specialised
    branch MN-EST , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

Introduction to the theory of electronic circuits and systems.
Modern electronic components and functional blocks, their description and ABM modelling.
Modelling real electronic components and functional blocks.
Analysis of linearized circuits with regular elements.
Analysis of circuits with irregular elements and functional blocks.
General properties of network functions. Circuit description in frequency and time domain.
Sensitivity and tolerance analysis. Noise analysis.
Design and synthesis of the circuits. Synthesis of the RLC two-poles.
Computer aided analysis and synthesis. Studding of parasitic influences. Optimization.
Analysis of the network stability. Oscillation.
Principles of nonlinear and parametric circuits. Circuits in current mode.
Methods of analysis of nonlinear circuits.
Principles of switched networks, switched capacitors, switched currents.

Exercise in computer lab

26 hod., compulsory

Teacher / Lecturer

Syllabus

Introductory information, analysis by the MATHCAD program
Symbolical circuits analysis by the SNAP program
Basic introduction to the PSPICE program
DC and AC analysis of electrical circuits
Time analysis, models of basic elements
Design and analysis of a simple amplifier
Final test.

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

Operational amplifier, properties, applications
Two-poles with negative input resistance
Transistor amplifier and liniter
Change of frequency spectrum in nonlinear circuits
Diode rectifiers
Parametric AM modulator
Final test (15 pt.)