Course detail

Simultaneous Engineering

FSI-PINAcad. year: 2019/2020

Fundamentals of team work. Cooperation between supplier and customer(preparation of a concept of solution, casting design and its prototype, batch production). Multimedia communications. Rapid prototyping (a quick manufacture of a prototype using one of the RP methods,i.e. selective sintering,stereolitography, laminating,etc). Simulation software programs aimed at optimizing the final product (used during casting pouring,solidification and cooling).
Technological characteristics of the design (Designing castings to avoid foundry defects).

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Learning outcomes of the course unit

Knowledge of a multimedia communication , rapid prototyping
using simulation programs,etc.

Prerequisites

Basic knowledge of a foundry technology, especially with respect to an optimal foundry casting design.Knowledge of rapid prototyping methods and basic computer simulation methods used in foundry technology.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline.

Assesment methods and criteria linked to learning outcomes

Attendance in lectures is recommended
Credit: semestr project - obligatory

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course familiarises students with basic principles of new philosophy
cooperation customer-supplier based on the teamwork approach
from the first idea up to the final realisation of the product.
The main aim is to provide students with knowledge
of the latest communication possibilities between a customer and supplier,
as well as with possible ways of an effective cooperation using the rapid
prototyping methods,computer-aided simulation and the like.

Specification of controlled education, way of implementation and compensation for absences

Presence in lessons obligatory compensation to be agreed with the lecturer

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

SIMULTANEOUS ENGINEERING - THE EXPRESS WAY INTO THE FUTURE (20000632) Casting Plant and Technology International V 16 N 2 P 36, 41-42, 46, Feb 2000 (4 p)
Simultaneous engineering for new product development : manufacturing applications Jack Ribbens New York, NY [u.a.] : Wiley, ©2000. ISBN-13: 978-0471252658
Simultaneous Engineering: Methodologies and Applications U. Roy, John Usher, Hamid R. Parsaei Taylor & Francis, 1999 ISBN 978-9056996604
SIMULTANEOUS ENGINEERING (19930252) Society of Manufacturing Engineers Conference on Design and Economics of Expendable Pattern Castings, Detroit. Nov 1992 (4 p)
THE ROLE OF PROCESS MODELLING IN SIMULTANEOUS ENGINEERING AND THE DEVELOPMENTS NEEDED TO MAKE IT A REALITY (19960703) 8th World Conference on Investment Casting, London, UK, P 21- 1 to 21-3, Jun 28-30, 1993 (3 p)
Use of Simultaneous Engineering in Development of Casting Prototypes and Samples (20083120) Livarski Vestnik, Issue 1, 2008, P37-49

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme M2I-P Master's

    branch M-SLE , 2 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., compulsory

Teacher / Lecturer

Syllabus

1.Basic principles of team work -supplier-customer
2.Modern trends in multimedial communication
3.Summary of basic rules for proper casting design I
4. - " - II
5. - " - III
6.Case studies of cooperation foundry-customer I
7. - " - II
8. - " - III
9.Rapid prototyping - survey of existing methods
10.FDM and LOM methods
11.Digital prototyping
12.Simulation programmes used for optimal casting design I
13. - " - II