Course detail

Practicum in Mathematics 2 PM

FP-BpmlPAcad. year: 2020/2021

Obsah tohoto praktika odpovídá předmětu Matematika 2 a dává studentům možnost se podrobněji seznámit s praktickým řešením konkretních úloh, procvičit si obtížnější partie a překonat obtíže pří zvládání učiva.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Learning outcomes of the course unit

Získané vědomosti a praktické matematické dovednosti zejména budou oporou pro získávání vědomostí a rozšiřování dovedností v oborech s ekonomickým zaměřením a pro korektní využívání matematických software a dále budou důležitým východiskem pro osvojování nových poznatků v navazujících předmětech matematického charakteru.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Cvičení jsou zaměřena na praktické výpočty a aplikační úlohy.

Assesment methods and criteria linked to learning outcomes

Požadavky pro udělení zápočtu:
-aktivní účast ve cvičení,
-plnění individuálních úkolů a zadávaných písemných prací,
-absolvování kontrolního testu v průběhu semestru s hodnocením alespoň "dostatečně" (E).

Course curriculum

1. Řady čísel (nutná podmínka konvergence, základní kritéria konvergence a divergence řad, odhad zbytku)
2. Mocninná řada (konstrukce Taylorova polynomu a odhad zbytku, Taylorův vzorec pro přibližný výpočet funkčních hodnot a integrálu)
3. Neurčitý integrál (použití vlastností a základních pravidel pro výpočet integrálů)
4. Metody integrace (použití metod per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (užití vlastností a základních pravidel pro výpočet, další aplikace, konvergence a příp. výpočet nevlastního integrálu)
6. Obyčejné diferenciální rovnice (obecné a partikulární řešení rovnice se separovanými proměnnými)
7. Lineární diferenciální rovnice 1. řádu (řešení homogenní a nehomogenní rovnice, metoda variace konstanty)
8. Funkce dvou proměnných I (definiční obory, grafy jednodušších funkcí 2 proměnných a jeho řezy, poruchy spojitosti, výpočty parciálních derivací 1. řádu)
9. Funkce dvou proměnných II (výpočty parciálních derivací vyšších řádů, určení gradientu a Hessovy matice funkce 2 proměnných)
10. Extrémy funkce dvou proměnných (výpočet stacionárních bodů a určení jejich charakteru – lokální extrém, určení absolutní ch a vázaných extrémů – Lagrangeova metoda)
11. Matematická logika (práce s výroky a operace s nimi, zákony a pravidla)
12. Relace (určení vlastností relací mezi množinami a na množině)
13. Grafy (klasifikace grafů, určení nejkratší cesty v ohodnoceném (orientovaném) grafu)

Work placements

Not applicable.

Aims

Cílem předmětu je zopakování, upevnění a utřídění poznatků získaných na přednášce a cvičení v předmětu Matematika II a rozvíjení dovednosti studentů řešit samostatně úlohy ze všech probíraných tematických okruhů. Studenti budou chápat a budou umět řešit vybrané aplikace matematiky v ekonomii, resp. informatice. Studenti budou seznámení s českou a anglickou odbornou terminologií.

Specification of controlled education, way of implementation and compensation for absences

V rámci cvičení absolvují studenti 10ti minutové písemné testy se zadáním z uvedených okruhů obsahového zaměření předmětu. K přípravě na ně, vyhodnocení testů a konzultacím je využíván e-learning, ve kterém mají studenti k dispozici elektronické materiály včetně kontrolních řešených příkladů. Studentovi je po jejich úspěšném absolvování (s alespoň 50% úspěšně řešených příkladů) udělen zápočet.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

MAROŠOVÁ, M. - MEZNÍK, I.: Cvičení z matematiky I., 2. vydání, Brno 2008, FP VUT v Brně, 144s, ISBN 978-80-214-3724-1
MEZNÍK, I. Diskrétní matematika pro užitou informatiku, Brno 2013, CERM s.r.o., 185 s, ISBN: 978-80-214-4761- 5
MEZNÍK, I.: Matematika I, , 9. vydání, Brno 2011, FP VUT v Brně, 150s, ISBN 978-80-214-3725-8
MEZNÍK, I.: Matematika II., 11.vydání, Brno 2009, CERM s.r.o., 105s, ISBN 978-80-214-3816-3

Recommended reading

FECENKO, J.: Matematika. 2.vydání, Ekonóm, Bratislava 1995, 377s, ISBN 80-225-0675-3
JACQUES, I.: Mathematics for economics and business. Second edition. Addison-Wesley, Wokingham 1994. 485s. ISBN 0-201-42769-9
MEZNÍK, I.- KARÁSEK, J.- MIKLÍČEK, J.: Matematika I pro strojní fakulty, 1. vydání, SNTL, Praha 1992, 502s, ISBN 80–03–00313-X

Classification of course in study plans

  • Programme BAK-PM Bachelor's 1 year of study, summer semester, elective

Type of course unit

 

Exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Řady čísel (nutná podmínka konvergence, základní kritéria konvergence a divergence řad, odhad zbytku)
2. Mocninná řada (konstrukce Taylorova polynomu a odhad zbytku, Taylorův vzorec pro přibližný výpočet funkčních hodnot a integrálu)
3. Neurčitý integrál (použití vlastností a základních pravidel pro výpočet integrálů)
4. Metody integrace (použití metod per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (užití vlastností a základních pravidel pro výpočet, další aplikace, konvergence a příp. výpočet nevlastního integrálu)
6. Obyčejné diferenciální rovnice (obecné a partikulární řešení rovnice se separovanými proměnnými)
7. Lineární diferenciální rovnice 1. řádu (řešení homogenní a nehomogenní rovnice, metoda variace konstanty)
8. Funkce dvou proměnných I (definiční obory, grafy jednodušších funkcí 2 proměnných a jeho řezy, poruchy spojitosti, výpočty parciálních derivací 1. řádu)
9. Funkce dvou proměnných II (výpočty parciálních derivací vyšších řádů, určení gradientu a Hessovy matice funkce 2 proměnných)
10. Extrémy funkce dvou proměnných (výpočet stacionárních bodů a určení jejich charakteru – lokální extrém, určení absolutní ch a vázaných extrémů – Lagrangeova metoda)
11. Matematická logika (práce s výroky a operace s nimi, zákony a pravidla)
12. Relace (určení vlastností relací mezi množinami a na množině)
13. Grafy (klasifikace grafů, určení nejkratší cesty v ohodnoceném (orientovaném) grafu)