Course detail

Physics

FAST-BB001Acad. year: 2020/2021

Partition of physics, field, mass, kinematics of a point mass, dynamics of a point mass, dynamics of a rigid body, hydromechanics, vibrations and waves.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Department

Institute of Physics (FYZ)

Learning outcomes of the course unit

To obtain the elementary know ledges and practical acquaintances in physics sphere: kinematics and dynamics of substantial point, mechanics of solid figure, hydromechanics and mechanics flash and wave.

Prerequisites

Knowledge of physics and mathematics at a level of highschool.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

1.week: Motion of particle. Instantaneous velocity. Instantaneous acceleration. Analysis of vector of acceleration
2.week: General motion. Uniform circular motion. Circular motion with uniform angular acceleration.
3.week: Dynamic of particle. Newton’s laws of motion. Solution of equation of motion. Motion in no inertial frame works.
4.week: Work, Power. Potential energy. Kinetic energy. The law of conservation of mechanical energy.
5.week: Impulse of force. Moment of force. Moment of momentum. Continuity between moment of force and moment of omentum.
6.week: Mass and momentum of a system of particles, external and internal forces. Moment of internal forces. Center of mass.
7.week: First impulse principle. Second impulse principle. Totally rigid body, force in rigid body. Couples forces.
8.week: Kinetic energy of rigid body. Moment of inertia. Work and power by circular motion of rigid body.
9.week: Pascal’s principle. Hydrostatic pressure. Archimedes principle. Surface tension.
10.week: Equation of continuity. Principle of fluid momentum. Bernoulli’s equation.
11.week: Free harmonic oscillations. Energy of harmonic oscillations.
12.week: Damped oscillations. Forced oscillations.
13.Week: Wave. Equation of displacement. Wave equation.

Work placements

Not applicable.

Aims

To obtain the elementary know ledges and practical acquaintances in physics sphere: kinematics and dynamics of substantial point, mechanics of solid figure, hydromechanics and mechanics flash and wave.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme B-P-C-SI Bachelor's

    branch VS , 1 year of study, winter semester, compulsory

  • Programme B-K-C-SI Bachelor's

    branch VS , 1 year of study, winter semester, compulsory

  • Programme B-P-E-SI Bachelor's

    branch VS , 1 year of study, winter semester, compulsory

  • Programme B-P-C-MI (N) Bachelor's

    branch MI , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1.week: Motion of particle. Instantaneous velocity. Instantaneous acceleration. Analysis of vector of acceleration 2.week: General motion. Uniform circular motion. Circular motion with uniform angular acceleration. 3.week: Dynamic of particle. Newton’s laws of motion. Solution of equation of motion. Motion in no inertial frame works. 4.week: Work, Power. Potential energy. Kinetic energy. The law of conservation of mechanical energy. 5.week: Impulse of force. Moment of force. Moment of momentum. Continuity between moment of force and moment of omentum. 6.week: Mass and momentum of a system of particles, external and internal forces. Moment of internal forces. Center of mass. 7.week: First impulse principle. Second impulse principle. Totally rigid body, force in rigid body. Couples forces. 8.week: Kinetic energy of rigid body. Moment of inertia. Work and power by circular motion of rigid body. 9.week: Pascal’s principle. Hydrostatic pressure. Archimedes principle. Surface tension. 10.week: Equation of continuity. Principle of fluid momentum. Bernoulli’s equation. 11.week: Free harmonic oscillations. Energy of harmonic oscillations. 12.week: Damped oscillations. Forced oscillations. 13.Week: Wave. Equation of displacement. Wave equation.

Exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

Week 1: instructions - introduction to methods of measurement, calculation methods, roles for an entire semester (cyclic tasks for pairs of students familiar with the safety regulations for work on electrical installations in student labs) Week 2 first laboratory measurement tasks according to the schedule Week 3 following measurements according to schedule and commit the previous measurements and calculated examples Week 4 following measurements according to schedule and commit the previous measurements and calculated examples Week 5 following measurements according to schedule and commit the previous measurements and calculated examples Week 6 following measurements according to schedule and commit the previous measurements and calculated examples Week 7 consultation, corrections, measurement of errorneous exercises Week 8 following measurements according to schedule and commit the previous measurements and calculated examples Week 9 following measurements according to schedule and commit the previous measurements and calculated examples Week 10 following measurements according to schedule and commit the previous measurements and calculated examples Week 11 following measurements according to schedule and commit the previous measurements and calculated examples Week 12 following measurements according to schedule and commit the previous measurements and calculated examples Week 13 exam and submission of the minutes of the previous measurements, credit Topics and content of laboratory exercises: Radius of curvature of spherical surfaces and dioptric power as found by means of the spherometer Surface area as determined by calculation and with a planimeter Density of solids as determined by the direct method and the hydrostatic balance Modulus of elasticity in tension as determined by direct method Modulus of elasticity in tension as measured tensometrically and mechanically by static method from deflection Modulus of elasticity in tension as determined by oscillations of a bar Modulus of elasticity in shear as determined by direct method Modulus of elasticity in shear as determined by dynamic method Local acceleration of gravity as determined by reversion pendulum Determining the moment of inertia from the physical pendulum’s swing period Moment of inertia as determined by torsial vibration Surface tension of liquids as determined by torsion balance Viscosity determined by Stokes viscosimeter

E-learning texts