Přístupnostní navigace
E-application
Search Search Close
Course detail
FAST-BDA013Acad. year: 2020/2021
The subject is focused on the interpretation of basic concepts of structural mechanics and elasticity of beam structures. Students will be able to solve reactions and internal forces of the plane statically determinate structures, of plane beams with straight and broken axis, to solve three-hinged broken beam with and without a bar, the planar composed beam systems and plane truss systems, to determine the position of centroid and the second order moments of cross-section. Basic principles, concepts and assumptions of the theory of elasticity and plasticity. Deflections. Strains. Stresses. Saint-Venant's principle of local action. Linear theory of the elasticity. Material laws, Stress-strain diagram. Analysis of a straight bar – basic assumptions. The interaction between the internal force components and the stress components, and between the internal force components and the external load. Basic cases of the loads of a bar. Simple tension and compression – the stress, the strain, the deflection. The influence of the temperature and the initial stresses. Simple shearing load. Simple bending load – calculation of the normal (axial) stresses. Design of the bent beams. The deflection of the bent beams. Differential equation of the deformation line. Method of initial parameters a Mohr’s method. Calculation of the tangent stresses – massive and thin-walled cross-sections. The consideration of the shear stress in the bent beam. The centre of the shear. Pure torsion and warping torsion. Free warping – massive circular and non-circular cross-section. Thin-walled closed and opened cross-section. Composed load cases of the bar. Spatial and biaxial bending. Tension (Compression) and bending in a plane. Eccentric torsion and compression. The core of the section. Design of the beams in the case of the composed (complex) load. The stability and the bucking strength of the compressed bars. Euler’s solution. The critical force and the critical stress. The strength approach to stability. A bar loaded by a bending and buckling load. The check of the buckling bars. The theory of the material strength and failure. The stress and strain state in a point of the body. The principal stress at the plane stress problem.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Lecture
Teacher / Lecturer
Syllabus
Exercise