Course detail

Metal Bridges 2 (DST)

FAST-NOB033Acad. year: 2020/2021

Steel-concrete composite bridges - basis of static and structural design.
Box girder bridges - basis of design, specialties of box girder bridges.
Arch bridges and frame bridges - types of arch and frame bridges, basis of static and structural design.
Skewed bridges and curved bridges - basis of design, specialties of curved and skewed bridges.
Suspension bridges and cable-stayed bridges - general principles of static behaviour, basis of design.
Steel and steel-concrete composite bridge supports - basic principles of static and structural design.
Manufacture and erection of metal bridges - basic methods and procedures.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Department

Institute of Metal and Timber Structures (KDK)

Learning outcomes of the course unit

Student will learn the problems of the course and will get under controll the course aims, within the meaning of obtaining knowledge and skills in the field of design of more complicated structural systems of metal and steel-concrete bridges, concretized in the course schedule.

Prerequisites

Design of members, components and connections of steel structures. Metal bridges, web-plated and truss bridges. Design of members and components of concrete structures. Static design of truss structures and arches including influence lines. Basis of design of suspension and cable-stayed structures.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

1. Steel-concrete composite bridges – loading actions, the beams in the elastic behaviour (basis of design).
2. Steel-concrete composite bridges – the beams in the plastic bahaviour, shear connections (basis of design).
3. Box girder bridges – specific properties of box girder bridges, the principles of static design, torsion of box girder bridges.
4. Skewed bridges and curved bridges – basis of design.
5. Arch bridges – types of arch bridges, structural composition, basic principles of static and structural design.
6. Arched bridges – specialties of the static design, frame bridges – basic principles.
7. Suspension bridges – basic principles of static and structural design.
8. Cable-stayed bridges – basic principles of static and structural design.
9. Steel and steel-concrete composite bridge supports – types, structural and static design.
10. Manufacture and erection of metal bridges. Examples of realized metal bridges.

Work placements

Not applicable.

Aims

The objective of the subject is to introduce students to the problems of this course and to practise acquires knowledge and skills.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme NPC-SIK Master's 2 year of study, winter semester, compulsory-optional

Type of course unit

 

Lecture

13 hod., optionally

Teacher / Lecturer

Syllabus

1. Steel-concrete composite bridges – loading actions, the beams in the elastic behaviour (basis of design). 2. Steel-concrete composite bridges – the beams in the plastic bahaviour, shear connections (basis of design). 3. Box girder bridges – specific properties of box girder bridges, the principles of static design, torsion of box girder bridges. 4. Skewed bridges and curved bridges – basis of design. 5. Arch bridges – types of arch bridges, structural composition, basic principles of static and structural design. 6. Arched bridges – specialties of the static design, frame bridges – basic principles. 7. Suspension bridges – basic principles of static and structural design. 8. Cable-stayed bridges – basic principles of static and structural design. 9. Steel and steel-concrete composite bridge supports – types, structural and static design. 10. Manufacture and erection of metal bridges. Examples of realized metal bridges.

Exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

1. Individual task of a project, basic information and requirements for an elaboration. 2. Structural composition of steel bridge with truss main girders (in dependence on the individual task). 3.–4. Static design of the bridge deck (in dependence on the individual task). 5.–6. Static design of main girders (in dependence on the individual task). 7.–8. Static design of bridge bracings (in dependence on the individual task). 9.–10. Structural detailing of selected bridge members or parts, elaboration of drawing documentation, project completion.