Course detail
Biomechanics III
FSI-RBMAcad. year: 2020/2021
The course aims at deeper understanding of biomechanical problems in cardio-vascular system. It presents overview of mechanical properties of its elements, analysis of their importance from the point of view of biomechanics and possible ways of their computational modelling. It deals with specific models of soft tissues (material non-linearity, anisotropic hyperelasticity, active contraction) based on description of their fibrous non-homogeneous structure. It presents the mechanical structure of animal cell and principles of its modelling. It offers an overview of basic reological properties of blood and modelling of pulsatile flow in a compliant tube. . Further, man-made replacements used in cardio-vascular surgery are dealt with (artificial cardiac pumps, heart valves, arterial stents, vascular grafts). It deals with their construction principles, specific requirements and materials and possibilities of improvement of their properties. Possibilities of exploitation of ANSYS software in cardiovascular mechanics and its limitations are presented.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Fung: Biomechanics. Mechanical properties of living tissues.Springer, 1993. (EN)
Holzapfel G.A., Ogden R.W.: Biomechanics of soft tissue in cardiovascular system. Springer 2003. (EN)
Humphrey: Cardiovascular solid mechanics. Cells, Tissues and Organs.Springer, 2002. (EN)
Recommended reading
Křen J., Rosenberg J., Janíček P.: Biomechanika. Vydavatelství ZČU, 1997. (CS)
Trojan S. , Schrieber M.: Atlas biologie člověka. Scientia, 2013 (CS)
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Definition of cardio-vascular system, fundamentals of its anatomy.
3. Fundamentals of physiological processes in heart and blood vessels, residual stress in arteries.
4. Structure and rheological properties of blood, models of blood behaviour, velocity profiles of non-Newtonean liquids, Fahraeus-Lindqvist effect.
5. Structure and components of vascular and myocardial walls, mechanical properties of components.
6. Constitutive models of soft tissues based on structural arrangement of collagen fibres.
7. Mechanical properties of cells, cytoskeleton and its computational modelling as a tensegrity structure.
8. Mechanical influence on atherosclerotic processes, principals of treatments.
9. Arterial stents, principals of function, design and production.
10. Systemization of replacements of organs, transplants, vascular grafts, their types, properties, aplication and production.
11.Natural and artificial heart valves, principals of function, overview of products.
12.Ventricular assist devices and total artificial hearts.
13.Actual possibilities of FEM in modelling of heart and blood vessels.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
Isotropic hyperelastic constitutive models of arterial wall, residual stress.
Alternative appproaches to calculation of residual stresses in arterial wall.
Computational modelling of flow in a compliant artery -fluid-structure interaction.
Tensegrity-based computational model of cell cytoskeleton.
Anisotropic model of contraction of left heart ventricle.
Formulation of semester projects for course unit credit.
Elearning