Course detail
Fundamentals of Optimal Control Theory
FSI-SOR-AAcad. year: 2020/2021
The course familiarises students with basic methods used in the modern control theory. This theory is presented as a remarkable example of the interaction between practical needs and mathematical theories. Also dealt with are the following topics:
Optimal control. Pontryagin's maximum principle. Time-optimal control of linear problems. Problems with state constraints. Singular control. Applications.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Examination: The examination tests the knowledge of definitions and theorems (especially the ability of their application to the given problems) and practical skills in solving of examples. The exam is written (possibly followed by an oral part).
Grading scheme is as follows: excellent (90-100 points), very good
(80-89 points), good (70-79 points), satisfactory (60-69 points), sufficient (50-59 points), failed (0-49 points). The grading in points may be modified provided that the above given ratios remain unchanged.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Howlett, P.G. - Pudney,P.J.: Energy-Efficient Train Control,Springer, London, 1995.. (EN)
Recommended reading
Lee, E. B. - Markus L.: Foundations of optimal control theory, New York, 1967. (EN)
Pontrjagin, L. S. - Boltjanskij, V. G. - Gamkrelidze, R. V. - Miščenko, E. F.: Matematičeskaja teorija optimalnych procesov, Moskva, 1961. (EN)
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Maximum principle.
3. Time-optimal control of an uniform motion.
4. Time-optimal control of a simple harmonic motion.
5. Basic results on optimal controls.
6. Variational problems with moving boundaries.
7. Optimal control of systems with a variable mass.
8. Optimal control of systems with a variable mass (continuation).
9. Singular control.
10. Energy-optimal control problems.
11. Variational problems with state constraints.
12. Variational problems with state constraints (continuation).
13. Solving of given problems.
Exercise
Teacher / Lecturer
Syllabus
2. The basic task of optimal control theory demonstrated by examples.
3. Time-optimal control of an uniform motion demonstrated by examples.
4. Time-optimal control of a simple harmonic motion demonstrated by examples.
5. Linear time-optimal control problems with fixed boundaries.
6. Linear time-optimal control problems with moving boundaries.
7. Optimal control of systems with a variable mass demonstrated by examples.
8. Optimal control of systems with a variable mass demonstrated by examples (continuation).
9. Optimal control of systems with a variable mass demonstrated by examples (continuation).
10. Problem of an energy optimal control of a train.
11. Nonlinear programming problems in optimal control problems.
12. Variational problems with state constraints.
13. Variational problems with state constraints (continuation).
Elearning