Course detail
Biological Signal Analysis
CESA-SABSAcad. year: 2020/2021
The course is focused on native and evoked biological signals (biosignals). It focuses on the characteristics of biosignals generated by the various systems of the human body (especially cardiovascular, nerve and muscle). The course is focused on methods for processing and analysis of biosignals in the time and frequency domain.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- formulate requirements for filters for noise suppression in ECG signals, EEG, EMG
- design and implement adaptive filters for suppressing power hum in biosignals
- design and implement special filters Lynn type for narrowband interference suppression
- explain the principle of detection of QRS complexes in ECG signals and graphoelements in EEG signals
- describe the principle of detecting the beginning and end of major waves in the ECG signals
- explain the principles of stationarity tests of stochastic signals
- describe the principle of non-parametric and parametric methods for estimating power spectra
- describe the principle of cross-spectra and coherence spectra estimation and their use for analysis of EEG signals
- describe the principle of Poincare maps and their use for signal analysis (HRV, TWA)
- explain the principle of realization mapping for analysis of EEG signals
- explain the principle of continuous estimate the level of surface EMG signal
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
- 70 points can be obtained for the written exam (the written examination is necessary to obtain at least 35 points)
Course curriculum
2. Electrocardiogram (ECG), its properties. Types of ECG signal processing requirements.
3. Preprocessing of ECG signals, linear and non-linear filters for suppressing interference.
4. Detectors QRS complexes. Delineation of ECG signals, rhythm and morphological analysis.
5. Analysis of heart rate variability (HRV) in the time and frequency domains.
6. Analysis of the stress ECG.
7. Phonocardiogram (PKG) and its analysis. Elektrogastrogram (EGG) and its analysis.
8. Electroencephalogram (EEG). Analysis of EEG signals in the time and frequency domain.
9. Evoked EEG signals, biosignals of visual and auditory systems.
10. Spirometry and processing of spirometric signals.
11. Electromyogram (EMG signal), MUAP analysis and analysis of surface EMG signals.
12. Kinesiological Electromyography.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
SVATOŠ, J.: Biologické signály I. Geneze, zpracování a analýza. Skripta FEL ČVUT, Vydavatelství ČVUT, Praha, 1992 (CS)
Recommended reading
Classification of course in study plans
- Programme SPC-STC Bachelor's 2 year of study, summer semester, compulsory
Type of course unit
Computer-assisted exercise
Teacher / Lecturer