Course detail
Engineering Mechanics
CESA-SDTMAcad. year: 2020/2021
The course “Engineering mechanics” is subdivided into two branches: kinematics and dynamics. Kinematics is aimed at proper formulation of motion, i.e. the students have to be able to determine how to calculate trajectory and position of rigid body or a multi body system. Kinematics of a particle, planar kinematics and a three-dimensional rigid body motion are discussed in the introduction to the course. The graphical and numerical methods for solution of planar mechanism motion are treated. Step by step the students are led through the following areas of dynamics: basic axioms, general dynamics of a particle, dynamics of a system of particles, dynamics of rigid bodies, inertia moments of rigid bodies and dynamics of multi body systems. The fundamentals Newton's Laws are used for solving of practical tasks. The solving based on methods of analytical dynamics is presented too. Description, analysis and solving the fundamental characteristics of linear resonance system are treated.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Final examination: Written part of the examination plays a decisive role, where the maximum of 80 ECTS points can be reached. Solution of several computational problems is demanded. The problems come from typical profile areas of given subject and supplied by a theoretical question, proof, etc. The lecturer will specify exact demands like the number and types problems during the semester preceding the examination.
Final evaluation of the course is obtained as the sum of ECTS points gained in seminars and at the examination. To pass the course, at least 50 points must be reached.
Course curriculum
2. Kinematics of a body - translational, rotational and planar motion. Planar kinematics of rigid body in a mechanism.
3. Kinematics motion analysis of mechanisms - combined motion.
4. Kinematics of a coupled rotation. Spherical motion.
5. Dynamics of a particle. Dynamics of a system of particles.
6. Motion equations of rigid bodies - translation, rotational and planar motion.
7. Inertia moments. Balancing of rotors.
8. Dynamics of planar and spherical motion. Gyroscopes.
9. Dynamics of planar multi body systems. Newton's Law.
10. Dynamics of planar multi body systems. Lagrangian mechanics.
11. Oscillation with 1 DOF. Excited oscillation with 1 DOF. Kinematic excitation.
12. Linear and non-linear dynamic systems.
13. Experimental dynamics.
Work placements
Aims
Kinematics is based on formulation of trajectory, body motion, multi body systems and determination of kinematic quantities, position, velocity and acceleration. For simple mechanical systems, students learn to solve kinematics of mechanisms and analyse the velocity and acceleration of key points of multi body system.
Determination of the kinematic quantities is necessary for further dynamic solving. Dynamics is based on knowledge of solving multi body systems.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Hibbeler R.C.: Engineering Mechanics-Statics and Dynamics, 2001 (EN)
Juliš K.,Brepta R. a kol.: Mechanika II.díl-Dynamika, 2002 (CS)
Recommended reading
Hibbeler R.C.: Engineering Mechanics-Statics and Dynamics, London 1995 (EN)
Přikryl K.: Kinematika, 2005 (CS)
Přikryl, K., Malenovský, E., Úlohy z kinematiky, 2005 (CS)
Slavík J.,Kratochvíl C.: Mechanika těles-Dynamika, 2000 (CS)
Elearning
Classification of course in study plans
- Programme SPC-STC Bachelor's 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Kinematika translačního a rotačního pohybu tuhého tělesa, kinematika obecného rovinného pohybu tělesa, řešení těles konající ORP v mechanismech.
3. Kinematika složeného pohybu bodu těles, kinematické řešení mechanismů.
4. Současné rotace, kinematika sférického pohybu.
5. Dynamika hmotného bodu, dynamika soustavy hmotných bodů.
6. Pohybové rovnice tuhého tělesa při translačním, rotačním pohybu.
7. Momenty setrvačnosti těles. Vyvažování tuhých rotorů.
8. Dynamika obecného rovinného pohybu a sférického pohybu tělesa. Gyroskopický moment.
9. Dynamika soustavy vázaných těles - rovinný případ. Konstrukce pohybových rovnic uvolňování ze soustavy.
10. Dynamika soustavy vázaných těles - řešení metodami analytické mechaniky. Lagrangeovy rovnice II.druhu.
11. Volné kmitání soustavy s jedním stupněm volnosti. Vynucené kmitání soustavy s jedním stupněm volnosti. Kinematické buzení.
12. Lineární a nelineární dynamické systémy.
13. Experimentální dynamika.
Fundamentals seminar
Teacher / Lecturer
Syllabus
2. Kiinematika složeného pohybu bodu tělesa v mechanismech.
3. Dynamika hmotného bodu a soustavy hmotných bodů. Aplikace základních vět dynamiky.
4. Dynamika rovinných soustav těles – konstrukce pohybových rovnic metodou uvolňování.
5. Dynamika rovinných soustav těles – konstrukce pohybových rovnic metodami analytické mechaniky.
6. Pohybová rovnice pro kmitající soustavu s jedním stupněm volnosti. Tlumené a netlumené volné kmity.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Kinematika mechanismů.
3. Dynamika těles. Pohybová rovnice.
4. Momenty setrvačnosti.
5. Dynamika rotačního a obecného rovinného pohybu tělesa.
6. Dynamika rovinných soustav těles s jedním stupněm volnosti.
7. Řešení lineární pohybové rovnice kmitání.
Elearning