Course detail
Applied Harmonic Analysis
FSI-9AHAAcad. year: 2020/2021
General theory of generating systems in Hilbert spaces: orthonormal bases (ONB), Riesz bases (RB), frames and reproducing kernels.
The associated operators (for reconstruction, discretization, etc.). Properties and characterization theorems. Canonical duality. Useful constructions and algorithms based on the application of the theory of pseudoinverse operators. Special frames (Gabor and wavelet) and their applications.
Language of instruction
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Attention will be paid also to the problems of finding numerically stable sparse solutions in models with a large number of parameters.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Ch.Heil: A Basis Theory Primer, expanded edition, Birkhäuser, New York, 2011 (EN)
O. Christensen: An Introduction to Frames and Riesz bases. Birkhäuser 2003 (EN)
V. Veselý a P. Rajmic. Funkcionálnı́ analýza s aplikacemi ve zpracovánı́ signálů, Odborná učebnice (4.vyd.). Vysoké učenı́ technické v Brně, Brno (CZ), 2019. ISBN 978-80-214-5186-5. (CS)
Recommended reading
H. G. Feichtinger (ed.) and T. Strohmer (ed.), Gabor analysis and algorithms. Theory and applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston-Basel-Berlin, 1998 (EN)
Ch. K. Chui: An Introduction to wavelets, Wavelet Analysis and Its Applications, vol. 1, Academic Press, Inc., San Diego, CA, 1992. (EN)
I. Daubechies: Ten Lectures on Wavelets, Ingrid Daubechies, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, Philadelphia, Pennsylvania, 1992. (EN)
S.S. Chen, D.L. Donoho and M. Saunders: Atomic Decomposition by Basis Pursuit, SIAM J. Sci. Comput. 20 (1998), no. 1, 33–61, reprinted in SIAM Review, 43 (2001), no. 1, pp. 129–159. (EN)
Y. Meyer: Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Pseudoinverse operators in Hilbert spaces
2. Transition from orthonormal bases (ONB) to Riesz bases (RB) and frames
3. Discretization, reconstruction, correlation and frame operator
4. Characterizations of ONBs, RBs and frames. Duality principle
5. Reproducing kernel Hilbert spaces
6. Selected algorithms for the solution of inverse problems, handling numerical instability connected with overparametrization (overcomplete frames)
7. Some special spaces and their properties
8. Some special operators and their properties
9. Gabor frames
10. Wavelet frames
11. Multiresolution analysis
12. Reserve
Seminar: student presentations of special topics possibly closely connected with PhD thesis