Course detail

Selected Chapters on Mathematics

FIT-MADAcad. year: 2020/2021

The course extends undergrad mathematical courses. Mathematical thinking is demonstrated together with broadening and deepening knowledge of the areas of mathematics and their connection to applications in computer science is shown. The particular areas are, e.g., logics, proof techniques, decision procedures, formal model theory, lattices, probability, and statistics.

Doctoral state exam topics:

  1. Advanced finite automata methods. 
  2. Automata techniques in decision procedures and verification. 
  3. SAT and SMT techniques.
  4. Proof techniques in predicate and first-order logic.
  5. Logical decision procedures.
  6. Galois connection, abstract interpretation, and applications.
  7. Modal and temporal logics.
  8. Advanced probability theory.
  9. Stochastic process and their analysis.
  10. Probabilistic programming and inference.
  11. Advanced graph algorithms. 
  12. Randomized algorithms.
  13. Process algebras.

Language of instruction

Czech

Mode of study

Not applicable.

Learning outcomes of the course unit

The ability to formalize and solve problems using mathematical apparatus, in particular proving of theorems, deepening and practicing basic mathematical terms, overview of areas of mathematics with important applications in computer science, especially in those related to the topic of the dissertation.
Broadening the ability to precisely formalize concepts and use the mathematical apparatus.

Prerequisites

Basic notions of relations, sets, propositional and first-order logic, algebra, finite automata.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

An exam at the end of the semester.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

  • Provide PhD students with better knowledge of mathematical methods used in computer science, especially in formal methods, with the focus on the particular topic of the dissertation,
  • Deepen the skills of application of the mathematical apparatus in general.

Specification of controlled education, way of implementation and compensation for absences

Not applicable.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, summer semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, summer semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, summer semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, summer semester, elective

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

  1. Advanced finite automata methods. 
  2. Automata techniques in decision procedures and verification. 
  3. SAT and SMT techniques.
  4. Proof techniques in predicate and first-order logic.
  5. Logical decision procedures.
  6. Galois connection, abstract interpretation, and applications.
  7. Modal and temporal logics.
  8. Advanced probability theory.
  9. Stochastic process and their analysis.
  10. Probabilistic programming and inference.
  11. Advanced graph algorithms. 
  12. Randomized algorithms.
  13. Process algebras.

Guided consultation in combined form of studies

26 hod., optionally

Teacher / Lecturer