Course detail

Chemical Engineering I

FCH-BC_CHIN1Acad. year: 2021/2022

Chemical and biochemical processes and apparatus fundamentals. Lectures are complemented by the computational and laboratory exercises. Mass balance, fluid flow, pumping, filtration, fluidization, mixing and particulate solids processing (characterisation of particulate systems, grain size measurment, comminution, separation, conveying systems, mechanics of particulate solids, storage systems).

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will obtain the basic knowledge about the mathematical aparatus of the Fluids and Particle Solids Unit operations of Chemical Engineering which take place in the design and pass judgments of the separate processes of the chemical and other production technologies in the laboratory and production plant size as well.

Prerequisites

Mathematics - vector algebra, differentials and integrals basis;
Physics - basis of mass point, hydrodynamics, thermodynamics and diffusion basis;
Instumentaions - physics quantities measurement, transmission and processing;
Chemical engineering I.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course uses teaching methods in form of Lecture - 2 teaching hours per week, seminars - 2 teaching hours per week. The other activities - 2 teaching hours per week for Practicum of Chemical Engineering. The e-learning system (LMS Moodle) is available to teachers and students.

Assesment methods and criteria linked to learning outcomes

Graded course-unit credit system. The student evaluation depends on the active attendance and the correctly solved separate numerical set of theoretical exerceces. The exam consists of the numerical part and the oral examination, studens have to show basic theoretical, numerical and practical knowledge in the branch. The use of defined literature materials in the numerical part of exem are allowed.

Course curriculum

1. Chemical-engineering balances; processes of modeling; dimensional analysis; dimensionless criterion equations; philosophy of unit operations.
2. Energy flow balance; Bernoulli's equation; continuity equation; Reynolds criterion and its application in processes; branched systems.
3. Presure losses in piping systems; the expression of losses in equivalent lengths; Navier-Stockes equation; Darcy's equation; Moody's diagram; basics of aerodynamics.
4. Pumping of liquids; working height of the pump; pipeline characteristics; placing the pump in the pumping process; head height; cavitation; power and efficiency of the pump; methods of controlling the flow of liquids by the pump; types of hydrodynamic and volumetric pumps.
5. Sedimentation processes; Stokes' relationship; Archimed Criterion; the procedure for calculating the sedimentation speed; nomograms of sedimentation rate calculation and minimum particle size of the sedimentation particle; correction of sedimentation velocity for non-particle particles; settling of the particles in the suspension; continuous sedimentation equipment in practice.
6. Mixing; perfectly segregated, mixed and random mix; issues of sampling and homogeneity assessment; mixing devices; the criteria used to calculate the homogeneity, mixer power, heat and mass transfer rate; splitting types of mechanical agitators by purpose and mixing modes; dissipation of mechanical energy; laboratory mixers; trends of sparkling mixers; static mixer zones; kinetics of homogenization;
7. Particulate matter; parameters specifying a particular system; granulometry and an overview of granulometric methods used; conveyors and particle dispensers; disintegration of the solid phase; jet milling; media mills; calculations of grinding energy; grinding bodies; nanomaterials and applications of nanomaterials; basics of mechanochemistry; basics of grinding ingredients.
8. Flow through a porous partition; the equivalent diameter of the canvases; definition of specific surfaces; Ergun formula for coefficient of hydrodynamic resistance; two-phase flow columns; structured and bulk layers; Ramm diagram; application of porous layers in filtration, chromatography and TWC automotive catalysts; logic of asymmetric porous layers;
9. Fluidization; fluidization columns and fluidization modes; fluid combustion; pressure drop in the fluidized bed; ripple; dependence of the pressure and expansion of the fluid bed; mixed fluid layers.
10. Pressure filtration, general filtration equation; a partial solution for constant pressure filtration and a constant flow rate; graphical solutions of filter constants; types of filtration according to the size of the separated particles.
11. Heat sharing; basic concepts of heat sharing; Heat Transfer by Radiation, Stefan - Boltzmann's Law; absolutely black and white bodies; emissivity; heat sharing on scaling; general heat conduction equation; coefficients of thermal and thermal conductivity; steady heat conduction for planar and circular surfaces; steady heat conduction with a composite sandwich surface; thermal insulation of pipes; the problem of heat resistance of windows.
12. Convection heat sharing; Basic criteria for calculating heat transfer; convection natural and forced; the placement of physical constants into critical relationships.
13. Heat transfer; heat sharing during phase change; condensation processes and their calculations, Nusselt's relationship; var kapaliny; the heat flow / heat transfer coefficient of combustion at the boiler temperature gradient; exchanging and regenerative heat exchangers and their calculations; types of exchangers in practice.

Work placements

Not applicable.

Aims

Principals and mathematical apparatus of the basic chemical-engineering units in the area of Fluids and Particle Solids and the access to the industry process equipment.

Specification of controlled education, way of implementation and compensation for absences

Partcipation on the prescribed Calculation exs, reports of all Calc. exs in the desiderative quality, the written part of Exam on the 32 points level min. of the 50poits sum-

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Míka, V.: Základy chemického inženýrství, SNTL Praha, 1977 (CS)
Richter J., Stehlík P., Svěrák T.: Chemické inženýrství, VUT v Brně, 2004. (CS)

Recommended reading

Bafrnec M.,Báleš V., Langfelder I., Longauer J.: Chemické inžinierstvo I, Malé centrum Bratislava, 1999 (SK)
Novák, V., Rieger, F., Vavro, K.: Hydraulické pochody v chemickém a potravinářském průmyslu, SNTL Praha 1995 (CS)

Classification of course in study plans

  • Programme BKCP_CHCHTE Bachelor's 3 year of study, winter semester, compulsory
  • Programme BPCP_CHCHTE Bachelor's 3 year of study, winter semester, compulsory
  • Programme BKCP_CHTM Bachelor's 3 year of study, winter semester, compulsory
  • Programme BPCP_CHTM Bachelor's 3 year of study, winter semester, compulsory
  • Programme BPCP_CHTOZP Bachelor's 3 year of study, winter semester, compulsory
  • Programme BKCP_CHTOZP Bachelor's 3 year of study, winter semester, compulsory

  • Programme BPCP_CHTPO Bachelor's

    specialization CHPL , 3 year of study, winter semester, compulsory
    specialization PCH , 3 year of study, winter semester, compulsory
    specialization BT , 3 year of study, winter semester, compulsory

  • Programme BKCP_CHTPO Bachelor's

    specialization PCH , 3 year of study, winter semester, compulsory
    specialization BT , 3 year of study, winter semester, compulsory
    specialization CHPL , 3 year of study, winter semester, compulsory

  • Programme BPCP_CHMA Bachelor's 3 year of study, winter semester, compulsory

  • Programme BKCP_CHCHT Bachelor's

    branch BKCO_CHTOZP , 3 year of study, winter semester, compulsory
    branch BKCO_SCH , 3 year of study, winter semester, compulsory
    branch BKCO_CHM , 3 year of study, winter semester, compulsory

  • Programme BPCP_CHCHT Bachelor's

    branch BPCO_SCH , 3 year of study, winter semester, compulsory
    branch BPCO_CHMN , 3 year of study, winter semester, compulsory
    branch BPCO_CHM , 3 year of study, winter semester, compulsory
    branch BPCO_CHTOZP , 3 year of study, winter semester, compulsory

  • Programme BPCP_CHTP Bachelor's

    branch BPCO_CHP , 3 year of study, winter semester, compulsory
    branch BPCO_BT , 3 year of study, winter semester, compulsory

  • Programme BKCP_CHTP Bachelor's

    branch BKCO_PCH , 3 year of study, winter semester, compulsory
    branch BKCO_BT , 3 year of study, winter semester, compulsory