Course detail
Methods of EMC Analysis
FEKT-MPC-EMCAcad. year: 2021/2022
Students will be introduced to (a) the mathematical representation of causal, EMC related signals with an emphasis on applications of the Laplace transform; (b) the modeling of electromagnetic (EM) interference of Kirchhoff circuits and transmission lines; (c) the EM emission analysis; (d) the disturbing EM susceptibility analysis.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Selected parts of vector calculus; integral theorems of mathematical analysis.
3. Sected parts of EM field theory.
4. Signal analysis with an emphasis on properties and applications of the Laplace transform.
5. EMC testing signals; spectral (Bode's) diagrams and spectral bounds.
6. Shielding efficiency of a conductive planar sheet.
7. Transmission line theory; time-domain description; calculation of the characteristic impedance.
8. EM field integral representations.
9. Integral formulations for EM scattering analysis.
10. EM emission from radiating systems.
11. Lorentz's reciprocity theorems; interaction with Kirchhoff's systems.
12. EM susceptibility of Kirchhoff's systems.
13. EM susceptibility analysis of a transmission line over a conductive ground.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
TESCHE, F. M., M. IANOZ a T. KARLSSON. EMC Analysis Methods and Computational Models. New York: John Wiley & Sons, 1997. ISBN 978-0-471-15573-7. (EN)
Recommended reading
Elearning
Classification of course in study plans
- Programme MPC-EKT Master's 2 year of study, winter semester, compulsory-optional
Type of course unit
Elearning