Course detail
Computer and Communication Networks
FEKT-MPC-PKSAcad. year: 2021/2022
Students become familiar with structure and architecture or networks; theory of packet-switching networks; reference models; applications (HTTP, FTP, SMTP, DNS); the TCP/IP protocol suite (TCP, UDP, IP, routing, flow control, IP addressing); transmission media; local computer networks, media-access methods; Ethernet (principle, variants, switches, VLAN, PoE), wireless network 802.11; broadband WAN technologies; multimedia applications (RTP, SIP, VoIP services, QoS); network security (basics of cryptography, authentication, integrity, certificates, SSL); management and programming.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
KUROSE, J. F., ROSS, K.W.,Computer Networking: A Top-Down Approach (7th Edition). USA:Pearson, 2016. ISBN: 978-0133594140. (EN)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Basic application-layer services: HTTP, FTP, SMTP, DNS.
3. Transport layer: communication protocols, implementation of UDP and TCP.
4. Network layer: mathematical theory of routing, IP protocol.
5. Link and physical layers: basic principles of data transmission, coding, and protocols.
6. Transmission media, comparison, basic parameters.
7. Local networks I. Topology, shared medium access. Standard IEEE 802.
8. Local networks II. Ethernet as dominating technology (100Mbs - 100Gbs). Hubs, switches, VLAN, flow control, QoS in LAN, STP.
9. Wireless networks 802.11.
10. Broadband technologies, photonic networks.
11. Multimedia services: RTP, VoIP, QoS in IP networks.
12. Security: ciphers, data integrity, certificates, SSL.
13. Network management, SNMP.
Exercise in computer lab
Teacher / Lecturer
Syllabus
2. Security, firewall - configuration, NAT, traffic analysis.
3. Routing and addressing in IP networks.
4. Implementation of network interface in embedded systems.
5. Domain Name System.
6. IPv6.
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Properties of hubs and switches, priority mechanisms.
3. Configuration of VLAN, security on link layer.
4. Access point 802.11, configuration, security.
5. VoIP, configuration of phone and PBX, subjective tests.
6. TCP/IP, macroscopic behavior (reaction on packet loss and delay).
Elearning