Course detail
Design of Power and Data Networks
FEKT-BKC-PSDAcad. year: 2021/2022
The goal of the course is to introduce issues concerning the design of data and power distribution systems according to current standards to students, the general concepts related to the design with a focus on project development, budget planning, familiarization with drawings creation and computer-aided design.
The course is focused also on the system "smart" installations and electrical installations in smart buildings, programming of control systems, including the visualization.
In this course, the emphasis is placed primarily on laboratory and computer exercises in which students are introduced to modern software and hardware equipment, and where they test and work with modern and current technologies in practice. In particular, students test the integration and recovery of several types of system electrical installations in practice, including an operational installation run test.
Current information can always be found under the subject’s bookmark or under e-Learning, or will be presented within class.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- What are the general and legislative requirements for a designer?
- What is the hierarchy of legislation in the Czech Republic?
- What is the standard, technical regulation, the harmonized standard? How do they differ from each other?
- What is the project documentation and which requirements does it have to meet?
- What is the content of the technical report and what is its structure?
- What is the energy balance of the building?
- What are the basic principles of determining dimensions and power circuits’ protection?
- What are the basic principles of power circuits designing?
- What are the basic principles of structured cabling designing and similar data circuits?
- What is a system electrical installation and what principle does it work in?
- What is a smart building?
- What is BMS (Building Management System) and BIM (Building Information Modeling)?
- What are the basic principles of over-voltage protection designing and what is an over-voltage protection?
- etc.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
- Evaluation of an individual project carried out in the computer labs, and (if needed) completed outside of the classroom.
- Assessment of laboratory exercises where the student complies with assigned tasks. Until the teacher determines otherwise, no protocols are needed to finish the task, etc.
- Evaluation of Final exam test.
The points ratio (Pc, Lab, Ex) is specified by the guarantor at the beginning of the semester. It is usually (40, 20, 40).
Course curriculum
1. Introduction - the organization of the semester
2. General introduction to the designing, design specifics in electrical engineering, requirements for individual designing.
3. Legislation in the designing, standards and regulations, safety and personnel classification in electrical engineering.
4. Design terminology, project, project documentation, drawings and project documentation, technical reports, types of environmental influences, environment categories.
5. Designing of power distribution, energy balance, dimensions and protection, lighting circuits designs, materials used for electrical installations.
6. Low voltage, telecommunication and LAN networks designs, parallel, structured cabling, shielding and interference management. Requirements in terms of electromagnetic compatibility.
7. Bill of quantities, budgets, labor and materials price, calculations, calculation formulas.
8. EZS and EPS distributions, uninterrupted power systems, emergency lighting systems.
9. Protection against lightning and surge protection.
10. Case study of the implementation of a residential house, the economic analysis.
11. Intelligent electrical installations in general, requirements, designing, programming.
12. Smart Buildings, Building Management System (BMS, IBMS), Building Information Modeling (BIM).
13. System electrical installations KNX-EIB, Teco, Inels, etc.
Computer exercises:
1. Modern designing software (AutoCAD, AstraSW, EPLAN), design methods, technical documentation, software support of designing, project assignment.
2. Basic installation circuits: socket circuits, circuits for fixed loads. Draft layout, installation zones, lighting circuits - design and control layout.
3. The selection of lights and luminaires, lighting systems design - flow method.
4. Cables, cable lines - construction, design and installation, storage systems.
5. Data distribution: computer networks and communication networks, LAN, phone lines. Topology layout, structured cabling systems, security and fire alarm installation (EPS, EZS).
6. Dimensions and Protection: Design of low voltage switchgear and facilities, electrical protection in low voltage systems, circuit breakers, fuses.
7. Internal over-voltage/surge protection, lightning and atmospheric over-voltage protection.
8. Project specification and draft of budget
Laboratory exercises:
9. Classical wiring, connection and control of lighting circuits, use of pulse relays, start-up asynchronous motor.
10. Intelligent electrical installations; INELS. Wiring, programming and "recovery" of intelligent electrical installations.
11. Intelligent electrical installations Ego-n. Wiring, programming and "recovery" of intelligent electrical installations.
12. Intelligent electrical installations KNX. Wiring, programming and "recovery" of intelligent electrical installations.
13. Intelligent electrical installations Teco, security systems and more available laboratory tasks.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Computer exercise is optional. Drawing up an individual project is mandatory.
Laboratory exercises and completion of all laboratory tasks are mandatory.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Electrical Wiring Residential, 17th Edition, Mullin/Simmons, ISBN10: 1-4354-9826-7, ISBN13: 978-1-4354-9826-6
Elektrotechnické a telekomunikační instalace. Praha: Verlag Dashofer nakladatelství, s.r.o., 2006. ISBN 80-86897-06-0
Recommended reading
Portal TZB-info - sekce elektrotechnika, dostupné z www.tzb-info.cz
Příručka pro projektování, montáže a revize, SALTEK 2016
Classification of course in study plans
- Programme BKC-SEE Bachelor's 3 year of study, winter semester, compulsory-optional
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Legislature for design, norms and regulations, work safety and the classification of competencies for workers in electrical engineering.
Terms for design, project, project documentation, lay-out documentation, Categorizing influences of environment, categories of areas.
Assessment specifications, budgets, appreciating work and material, calculations, calculation formulas.
Connecting and interconnecting materials, conductors, wiring cables, wiring, dimensioning conductors, industrially materials used.
Electrical insulation materials in low voltage networks, design of low voltage switchboards, grounding, lightning conductors, protective interconnections.
Electronic security systems and electronic fire alarm systems, back-up power supplies, emergency lighting systems.
Construction materials for high and very high voltage, wiring constructions, design of loose wiring, cable wiring.
Design of co-generation units, connecting conditions of power distribution plants, dimensioning of main connections and the choice of circuit breakers.
Design of large complexes of electrical power systems, a general approach to an electric power system, energy-related, economic and ecological balance, other influences upon the environs.
Design of hydroelectric, wind and solar power plants and other alternative electric power sources.
Modern systems for design, computer-aided design, CAD, CAM, CAE systems, present design trends.
The tasks of a developer in the future in the sphere of electric power systems, general view of electrical power problems in the present and in the future.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Elaborating a project documentation.
Elaborating a project documentation.
Elaborating assessment specification and works appreciation.
Elaborating assessment specification and materials appreciation.
Electrical wiring design.
Short circuit current calculations and conductor dimensioning.
Assignment of a switchboard project.
An independent switchboard project.
An independent switchboard project.
Laboratory exercise
Teacher / Lecturer
Syllabus
Drawer instalittion.
Connection of induction motor.
Systeme of intelligent electro-installations, installation and programing.