Course detail
Mathematics 2
FP-MA2_MAcad. year: 2021/2022
This course follows Mathematics I course. Content is linear algebra, differential calculus of several variables, differential and difference equations (mainly linear) and instruments for their only solution - power series and Fourier series and selected integral transformation.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Conditions for awarding course-unit credits:
-active participation in the seminars where the attendance is compulsory,
-fulfilment of individual tasks and successful completion of written assignments,
-working out of a semester project marked with at least “E”,
-completion of partial written exams marked more than 55% points
The exam has a written and an oral part with the written part being more important.
Course curriculum
2. Derivation of the 1st order (meaning, basic properties and rules, derivation of elementary functions)
3. Derivation of 1st and higher orders (differential and its use, derivation of higher orders, l´Hospital's rule)
4. Course of function I (monotonicity, local and absolute extrema of function)
5. Course of function II (convexity and concavity; asymptotes of function, complete description of function behavior)
6. Indefinite integral (sense, properties, condition of existence, basic rules for calculation, integrals of some elementary functions)
7. Integration methods (per partes and substitution method, integration of simple rational functions)
8. Definite integral (sense, properties, rules for calculation, other applications, improper integral)
9. 1st order differential equations (with separated variables, linear)
10. Linear differential equations of the 2nd order (with constant coefficients)
11. Functions of several variables (graph and its sections, partial derivatives of the 1st order, differential)
12. Partial derivatives of higher orders (interchangeability, local extrema)
13. Absolute and bounded extrema (on compact sets, Lagrange's method)
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MEZNÍK, I. Základy matematiky pro ekonomii a management. Základy matematiky pro ekonomii a management. 2017. s. 5-443. ISBN: 978-80-214-5522-1. (CS)
Mezník,I.: Matematika II.FP VUT v Brně, Brno 2009 (CS)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Elearning