Course detail
Mathematics II-B
FSI-BMAcad. year: 2021/2022
The course takes the form of lectures and seminars dealing with the following topics:
Real functions of two and more variables, Partial derivatives - total differentials, Applications of partial derivatives - maxima, minima and saddle points, Lagrange multipliers, Taylor's approximation and error estimates, Double integrals, Triple integrals, Applications of multiple integrals, Methods of solving ordinary differential equations
A significant part of the course is devoted to applications of the studied topics. The acquired knowledge is a prerequisite for understanding the theoretical foundations in the study of other specialized subjects.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
There are two written tests (each at most 12 points) within the seminars and a seminar with the computer support. The student can obtain at most 24 points altogether within the seminars. Condition for the course-unit credit: to obtain at least 6 points from each written test. Students, who do not fulfill conditions for the course-unit credit, can repeat the written test during the first two weeks of examination time.
FORM OF EXAMINATIONS:
The exam has an obligatory written and oral part. The student can obtain 75 points from the written part and 25 points from the oral part (the examiner can take into account the results of the seminar).
EXAMINATION:
- The written part ranges from 90 to 120 minutes according to the difficulty of the test.
- The written part will contain at least one question (example) from each of the following topics:
1. Differential calculus of functions of several variables.
2. Multiple integrals
3. Ordinary differential equations
- The written part may also include theoretical questions from the above-mentioned themes.
- The oral part is usually realized as a discussion of the test. For each example, the student must be able to justify his calculation procedure - otherwise, the test will not be recognized and will be evaluated for zero points. An additional theoretical question can be asked, or a supplementary simple example, which the student calculates immediately.
FINAL CLASSIFICATION:
0-49 points: F
50-59 points: E
60-69 points: D
70-79 points: C
80-89 points: B
90-100 points: A
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Kurzweil, J.: Obyčejné diferenciální rovnice, Praha, SNTL, 1978. (CS)
Rektorys K. a spol.: Přehled užité matematiky I,II (SNTL Praha, 1988) (CS)
Sneall D.B. - Hosack J.M.: Calculus, An Integrated Approach (EN)
Thomas G.B. - Finney R.L.: Calculus and Analytic Geometry, 7th edition (EN)
Recommended reading
Děmidovič B. P.: Sbírka úloh a cvičení z matematické analýzy (CS)
Karásek J.: Matematika II (skriptum VUT) (CS)
Thomas G.B., Finney R.L.: Calculus and Analytic Geometry (7th edition) (EN)
Elearning
Classification of course in study plans
- Programme B-ENE-P Bachelor's 1 year of study, summer semester, compulsory
- Programme B-STR-P Bachelor's
specialization STR , 1 year of study, summer semester, compulsory
- Programme B-VTE-P Bachelor's 1 year of study, summer semester, compulsory
- Programme B-PRP-P Bachelor's 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Partial derivative, a gradient of a function, derivative in a direction.
3. First-order and higher-order differentials, tangent plane to the graph of a function in two variables, Taylor polynomial.
4. Local extremes, Method of Lagrange multipliers.
5. Absolute extremes function defined implicitly.
6. Definite integral more variables, definition, basic properties, computing of the integrals using rectangular coordinates.
7. Fubini's theorem, calculation on elementary (normal) areas.
8.Transformation of the integrals (polar, cylindrical and spherical coordinates).
9. Applications of double and triple integrals.
10. Ordinary differential equations (ODE), basic terms, existence, and uniqueness of solutions, analytical methods of solving of 1st order ODE.
11. Higher-order ODEs, properties of solutions and methods of solving of higher-order linear ODEs.
12. Systems of 1st order ODEs., properties of solutions and methods of solving of linear systems of 1st order ODEs.
13. Boundary value problem for 2nd order ODEs.
Exercise
Teacher / Lecturer
Syllabus
Computer-assisted exercise
Teacher / Lecturer
Syllabus
Elearning