Course detail
Electrical Engineering and Electronics in Physical Experiment
FSI-TEFAcad. year: 2021/2022
The course deals with the properties of elements of electronic circuits and their use in experimental practice. Attention is paid to measuring equipment, generators and counters, filters, feedback elements, signal processing and converters D/A and A/D. Lectures are strongly supported by the practical applications.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
study and to extend it.
Students will be made familliar with the principles of modern electrical engineering and electronics which are necessary for the study of other specialized disciplines and particularly to bring off the future technical practice.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
- Programme B-FIN-P Bachelor's 3 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Multimeters, osciloscopes, generators and counters
Capacitance and inductance - Filters, derivative and integral members
Transistors and amplifiers - transistor characteristics and basic use of transistor amplifiers
Diodes - Rectifiers, filters and voltage stabilizers, power supplies
Operational amplifiers - Feedback, basic use of operational amplifiers
Measurement of non-electrical quantities - Basic principles of electrical measurement, converters of physical quantities
Fundamentals of Signal Processing - Measuring chain, signal dynamics, noise and types of noise
Spectral analysis - periodic and aperiodic signal
Digital to analog and analog to digital conversion - Principles of AD / DA converters, sampling, aliasing
Regulation and automation - Basic concepts, continuous and discontinuous regulation, Laplace transform, basic types of regulators
Laboratory exercise
Teacher / Lecturer
Syllabus
Safety at electronic laboratories
Introduction to the work organization
2. Resistive dividers and shunts
Measurement of voltage and current on diviers
Using a shunt for current measurement
3. The capacity and inductance in the circuit
Measurement of RC and LC circuit
4. Transistor Amplifier
Amplifier in common emitter configuration
Influence of collector resistor on amplification
5. Rectifier, voltage stabilizers
Bridge Rectifier
Dependence of output voltage ripple on take-off
Stabilization using Zener diode
6. Operational Amplifier
Inverting amplifier
7. Thermometer with thermistor and operational amplifier
8. Amplifier of small signal
Light intensity sensor with an operational amplifier
Influence of noise and induced noise
9. Spectrum Analyzer
Spectra of simple periodic signals
The spectrum of radio signals at the antenna
10. A/D and D/A converters
11. Regulator with operational amplifier
Temperature regulator with operational amplifier (type P, PI)