Course detail

Fundamentals of Linear Algebra

FSI-TLAAcad. year: 2021/2022

The course deals with the following topics:
vector spaces, matrices and operations on matrices,
determinants, matrices in step form and rank of a matrix, systems of linear equations, Euclidean spaces, scalar product of vectors, eigenvalues and eigenvectors of a square matrix, diagonalization.
Fundamentals of analytic geometry, linear concepts

Language of instruction

Czech

Number of ECTS credits

2

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will be made familiar with algebraic operations, linear algebra, vector and euclidean spaces, and analytic geometry. They will be able to work with matrix operations, solve systems of linear equations and apply the methods of linear algebra to analytic geometry and engineering tasks. When completing the course, the students will be prepared for further study of mathematical and technical disciplines.

Prerequisites

Students are expected to have basic knowledge of secondary school mathematics.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Course-unit credit requirements:
Active attendance at the seminars.
Two 10 points semestral examps

Form of examinations: The examination has a written and an oral part. In a 120-minute written test, students solve the 4 problems
copying lecture topics.
During the oral part of the examination, the examiner goes through the test with the student. The examiner should inform the students at the last lecture about the basic rules of the examination and the evaluation of its results.
Rules for classification: The student can achieve 20 points for each problem.

Therefore he/she may achieve 100 points in total.

Final classification:
A (excellent): 90 to 100 points
B (very good): 80 to 89 points
C (good): 70 to 79 points
D (satisfactory): 60 to 69 points
E (sufficient): 50 to 59 points
F (failed): 0 to 49 points

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course aims to acquaint the students with the basics of algebraic operations, linear algebra, vector and euclidean staces, and analytic geometry. This will enable them to attend further mathematical and engineering courses and deal with engineering problems. Another goal of the copurse is to develop the students´ logical thinking.

Specification of controlled education, way of implementation and compensation for absences

Attendance at lectures is recommended, attendance at seminars is required. The lessons are planned on the basis of a weekly schedule. The way of compensation for an absence is in the competence of the teacher.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

AXLER, S. J. (1997). Linear algebra done right. New York, Springer. (EN)
Jan Slovák, Martin Panák, Michal Bulant a kolektiv Matematika drsně a svižně, 1. vyd. — Brno : Masarykova univerzita, 2013 — 773 s. , Jan Slovák, Martin Panák, Michal Bulant a kolektiv ISBN 978-80-210-6307-5 (CS)
KARÁSEK, J., SKULA, L.: Lineární Algebra. Brno: AKADEMICKÉ NAKLADA-. TELSTVÍ CERM, 2005. 179 p. ISBN 80-214-3100-8. (CS)
Lang, Serge (March 9, 2004), Linear Algebra, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-96412-6 (EN)

Recommended reading

Horák, P., Janyška, J.: Analytická geometrie, Masarykova univerzita 1997 (CS)
Janyška, J., Sekaninová, A.: Analytická teorie kuželoseček a kvadrik, Masarykova univerzita 1996 (CS)

Elearning

Classification of course in study plans

  • Programme B-FIN-P Bachelor's 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Matrix operations, including inverses
2. Determinants and their properties (volume form)
3. Systems of linear equations, row reduction and echelon forms
4. Linear dependence and independence
5. Subspaces and bases and dimensions
6. Linear transformations
7. Method of the moving frame
8. Orthogonal bases and orthogonal projections
9. Gram-Schmidt process
10. Quaternions, Spin groups
11. Eigenvalues and eigenvectors
12. Diagonalization of a matrix
13. Analytic geometry

Exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

1st week: Basics of set theory, operations on sets, mappings.
Following weeks: Seminar related to the topic of the lecture given in the previous week.

Elearning