Course detail
Digital Signal Processing (in English)
FIT-CZSaAcad. year: 2021/2022
Introduction to digital signal processing, sampling and quantization, Frequency analysis of digital signals, Principles of digital filters, Digital filter design, Practical implementation of digital filters. Processing in frequency domain, Sub-band signal processing, changing the sampling frequency, Wavelet analysis and synthesis, Random signals, State space representation, System identification, Wiener and Kalman filtering, Vector signal processing.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
- Solving and submitting solution of two home-works during the semester (7pts each, total 14pts)
- Half-semestral exam (15pts)
- Submission and presentation of project (20pts)
- Semestral exam, 51pts, requirement of min. 17pts.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Mallat S, A Wavelet Tour of Signal Processing (Third Edition), Academic Press, 2009, ISBN 9780123743701
Oppenheim A.V., Wilski A.S.: Signals and systems, Prentice Hall, 1997.
Classification of course in study plans
- Programme IT-MSC-2 Master's
branch MIN , 0 year of study, winter semester, compulsory-optional
- Programme MITAI Master's
specialization NADE , 0 year of study, winter semester, elective
specialization NBIO , 0 year of study, winter semester, elective
specialization NCPS , 0 year of study, winter semester, compulsory
specialization NEMB , 0 year of study, winter semester, elective
specialization NGRI , 0 year of study, winter semester, elective
specialization NHPC , 0 year of study, winter semester, elective
specialization NIDE , 0 year of study, winter semester, elective
specialization NISD , 0 year of study, winter semester, elective
specialization NMAL , 0 year of study, winter semester, elective
specialization NMAT , 0 year of study, winter semester, elective
specialization NNET , 0 year of study, winter semester, elective
specialization NSEC , 0 year of study, winter semester, elective
specialization NSEN , 0 year of study, winter semester, elective
specialization NSPE , 0 year of study, winter semester, compulsory
specialization NVER , 0 year of study, winter semester, elective
specialization NVIZ , 0 year of study, winter semester, elective - Programme IT-MGR-1H Master's
branch MGH , 0 year of study, winter semester, recommended course
- Programme IT-MSC-2 Master's
branch MGMe , 0 year of study, winter semester, compulsory-optional
- Programme MITAI Master's
specialization NISY up to 2020/21 , 0 year of study, winter semester, elective
specialization NISY , 0 year of study, winter semester, elective
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Introduction to digital signal processing, sampling and quantization.
- Frequency analysis of digital signals, DTFT, DFT and FFT.
- Principles of digital filters.
- Digital filter design.
- Practical implementation of digital filters.
- Processing in frequency domain
- Sub-band signal processing, changing the sampling frequency.
- Wavelet analysis and synthesis.
- Random signals - correlation and power spectral density.
- State space representation.
- System identification.
- Wiener and Kalman filtering.
- Vector signal processing
Fundamentals seminar
Teacher / Lecturer
Syllabus
Project
Teacher / Lecturer
Syllabus
- Simple signal processing for a microphone array
- Estimation of transfer function of a mechanical system
- Changing the properties of sound using time-frequency processing.
- Sub-band audio coding.