Course detail
Physical Optics
FIT-FYOAcad. year: 2021/2022
Electromagnetic waves and light. Fresnel's equations. Reflection at dielectric and metallic surfaces, polarization. Coherence, interference from thin films. Diffraction by 2D and 3D structures. Holography, holography code, reconstruction of optic field. Transmission of light through media. Dispersion, absorption. Scattering. Thermal radiation. Elements of image-forming systems. Analytical ray tracing. Matrix concept. Errors in image forming. Quantum mechanical principles of radiation. Spectra of atoms and molecules. Physical statistics. Photon. Stimulated and spontaneous emission. Lasers. The basis of luminiscence. Radioactive radiation.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
- Mid-term exam - up to 10 points
- Project - up to 30 points
- Written exam - up to 60 points
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Hecht, E., Zajac, A.: Optics, Addison-Wesley, Reading, UK, 1977, ISBN 0-201-02835-2
Malý, P.: Optika (2ed), Karolinum, 2013, ISBN 978-80-246-2246-0
Saleh, B. E. A, Teich, M. C.: Fundamentals of Photonics, Wiley 2007, USA, 978-0-471-35832-9
Schroeder, G.: Technická optika, SNTL, Praha, ČR, 1981
Classification of course in study plans
- Programme IT-MSC-2 Master's
branch MBI , 0 year of study, summer semester, elective
branch MBS , 0 year of study, summer semester, elective
branch MGM , 1 year of study, summer semester, compulsory
branch MIN , 0 year of study, summer semester, elective
branch MIS , 0 year of study, summer semester, elective
branch MMM , 0 year of study, summer semester, elective
branch MPV , 0 year of study, summer semester, elective
branch MSK , 0 year of study, summer semester, elective - Programme MITAI Master's
specialization NADE , 0 year of study, summer semester, elective
specialization NBIO , 0 year of study, summer semester, elective
specialization NCPS , 0 year of study, summer semester, elective
specialization NEMB , 0 year of study, summer semester, elective
specialization NGRI , 1 year of study, summer semester, compulsory
specialization NHPC , 0 year of study, summer semester, elective
specialization NIDE , 1 year of study, summer semester, compulsory
specialization NISD , 0 year of study, summer semester, elective
specialization NMAL , 0 year of study, summer semester, elective
specialization NMAT , 0 year of study, summer semester, elective
specialization NNET , 0 year of study, summer semester, elective
specialization NSEC , 0 year of study, summer semester, elective
specialization NSEN , 0 year of study, summer semester, elective
specialization NSPE , 0 year of study, summer semester, elective
specialization NVER , 0 year of study, summer semester, elective
specialization NVIZ , 0 year of study, summer semester, elective
specialization NISY up to 2020/21 , 0 year of study, summer semester, elective
specialization NISY , 0 year of study, summer semester, elective
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Electromagnetic waves and light.
- Light at the interface of two media, Fresnel's equations. Reflection at dielectric and metallic surfaces, linear and elliptical polarization. Polarizers.
- Coherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
- Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
- Transmission of light through media. Dispersion, spectrometers, rainbow. Absorption. Scattering.
- Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
- Elements of image-forming systems. Mirrors, prisms, lenses, the microscope, the telescopes. The Fermat principle.
- Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power. Errors in image forming. Notes on fiber optics.
- The quantum mechanical concept of radiation. The wave function, the Schroedinger equation, the uncertainty principle. The tunnel effect.
- Energy levels, the Pauli exclusion principle, energy bands. Spectra of atoms and molecules. Selection rules.
- Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
- The basics of luminiscence, phosphors, fluorescence, phosphorescence.
- Radioactive radiation.
Fundamentals seminar
Teacher / Lecturer
Project
Teacher / Lecturer
Syllabus
- Individually assigned projects; it is expected that the "programming part" of the assignment will be consulted and evaluated in other course (more computer science oriented).