Course detail
Hardware/Software Codesign (in English)
FIT-HSCeAcad. year: 2021/2022
The course focuses on aspects of system level design. Implementation of HW/SW systems optimized according to various criteria. Behavioural and structural HW/SW system description. Basic hardware and software components and interface models. Hardware and software components synthesis. Assignment of behavioural description to given components. Design of interfaces between HW/SW components. Planning access to distributed components. Prediction and design analysis techniques regarding given constrains. HW/SW partitioning algorithms and tools. Heterogeneous computation architectures and platforms. Integrated design tools. Case studies of optimized HW/SW systems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Learning outcomes of the course unit
Theoretical background for analysis and design of HW/SW systems.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Project (25 points) mid exam (20 points) final exam (55 points)
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
L. H. Crockett, R. A. Elliot, M. A. Enderwitz and R. W. Stewart: The Zynq Book: Embedded Processing with the ARM CortexA9 on the Xilinx Zynq-7000 All Programmable SoC, First Edition, Strathclyde Academic Media, 2014. (EN)
De Micheli, G., Rolf, E., Wolf, W.: Readings in Hardware/Software Co-design, Morgan Kaufmann; 1. vydání, 2001, 697 s., ISBN: 1558607021. (EN)
M. Fingeroff: High-Level Synthesis Blue Book, Xlibris US, 2010, ISBN 1450097243. (EN)
Schaumont, P. R.: A Practical Introduction to Hardware/Software Codesign, Second Edition, Springer, 2013, ISBN 978-1-4614-3737-6 (eBook). (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- System-level design methodology for embedded systems.
- Heterogeneous computation structures, architectures and platforms.
- Behavioral and structural HW/SW system description.
- System-level synthesis - allocation, binding and scheduling.
- HW structures synthesis and optimization.
- CAD tools for HW/SW codesign.
- Languages for HW/SW system description.
- Design estimation and analysis techniques.
- Low-power design techniques.
- Models of computation.
- Inter-component interfaces and communication.
- Partitioning algorithms and tools.
- System-level optimization.
Project
Teacher / Lecturer
Syllabus