Course detail

Mathematical Modeling in Water Management

FAST-NRA017Acad. year: 2021/2022

Common bases for mathematical model creation.
Modelling of water flow in water structures.
Modelling of water flow in river network and floodplains.
Reliability of water structures.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Department

Institute of Water Structures (VST-VST)

Learning outcomes of the course unit

Students complete goal of this course which include getting up principles of mathematical modelling in water management. Also students get experience in mathematical modelling through term projects.

Prerequisites

Mathematics, Hydraulics, Hydrology, Soil Mechanics.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

1.–2. Introduction to problematic of mathematical modelling. Governing equations of fluid mechanics.
3.–5. Modelling of turbulent flow.
6.–7. Free surface flow (1D, 2D, hydraulic jump, sewer systems – aims, data, models).
8. Reliability of water structures (data, models).
9.–10. Analytical and numerical solutions.

Work placements

Not applicable.

Aims

The aim of the course is to acquaint students with principles of mathematical modeling. The students will obtain knowledge about models of flow of water and water.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme NPC-SIV Master's 2 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1.–2. Introduction to problematic of mathematical modelling. Governing equations of fluid mechanics. 3.–5. Modelling of turbulent flow. 6.–7. Free surface flow (1D, 2D, hydraulic jump, sewer systems – aims, data, models). 8. Reliability of water structures (data, models). 9.–10. Analytical and numerical solutions.

Exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Introduction to problematic of mathematical modelling. Introduction to the software. 2.–5. Modelling of ideal flow and laminar flow. 6.–9. Modelling of turbulent flow. 10. Presentation of the results of modeling.