Course detail

Engineering and Transport Structures

FAST-BOA001Acad. year: 2022/2023

History, progress and importance of engineering structures in civil engineering
Basic types of building and engineering structures and their general characteristics.
Building materials – material properties from the viewpoint of usage in building structures, basic material characteristics.
Load of building structure, load classification, particular load cases and their combinations.
Concrete and masonry structures, metal and timber structures – basic types, dispositional and structural design, significant structural details.
Basis of design and computer modelling of engineering structures.
Concrete and steel bridges and timber footbridges, masonry bridges and vaults: overview of types.
Transportation history, categorization, social aspects, transportation advantages and disadvantages. Integrated transport systems. Transportation terminology and basic concepts.
Railway transport charakteristic, basic concepts, alignment and profile of the line, permanent way and subgrade. Railway station.
Roadway and motorway characteristics in CR, design of road structures, technologies for road construction, urban infrastructure.
Airports.

Language of instruction

Czech

Number of ECTS credits

Mode of study

Not applicable.

Department

Institute of Metal and Timber Structures (KDK)

Offered to foreign students

Of all faculties

Learning outcomes of the course unit

Student will learn the problems of the course and will get under controll the course aims, within the meaning of obtaining knowledge and skills in the field of basic principles of design of civil engineering structures, concretized in the course schedule.

Prerequisites

Basic knowledge of building materials, elementary bases of elasticity, strength and structural mechanics.
Fundamental knowledge of mathematics and geometry. General knowledge and orientation in maps.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

1. Basic types of building and engineering structures.
2. Materials for civil structures.
3. Basic types of concrete, masonry, steel and timber structures.
4. Loading of building structure, load classification, kinds of loading actions, load cases and their combinations.
5. Basis of design and computer modelling of engineering structures.
6. Basis of structural design of buildings.
7. Concrete, steel and timber bridges and footbridges.
8. Transportation history, categorization, social aspects, transportation advantages and disadvantages. Transportation terminology and basic concepts. Alignment and profile of the line.
9. Roadway and motorway characteristics in CR. Structural and geometrical arrangement of road structures.
10. Urban road.
11. Technologies for road construction. Road types.
12. Permanent way and subgrade.
13. Railway stations. Airports.

Work placements

Not applicable.

Aims

The objective of the subject is to introduce students to the problems of this course and to practise acquires knowledge and skills.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Bajer, M., Pilgr. M, Veselka, M. Konstrukce a dopravní stavby, modul "Konstrukce - obecný postup při návrhu stavebních konstrukcí - výpočtový model, vlastnosti stavebních materiálů, zatížení", studijní opory, FAST VUT 2006.  (CS)
Chochol, Lehovec a kol.: Cesty a dialnice-Projektovanie. ALFA Bratislava, 1989. (SK)
Karmazínová, M., Sýkora, K., Šmak, M. Konstrukce a dopravní stavby, modul "Konstrukce - základní typy konstrukcí, konstrukční řešení staveb, mosty", studijní opory, FAST VUT, 2006. (CS)
Puchrík, J., Janoštík, D. Konstrukce a dopravní stavby, modul "Dopravní stavby", studijní opory, FAST VUT, 2006. (CS)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme BPC-SI Bachelor's

    specialization VS , 2 year of study, winter semester, compulsory

  • Programme BPA-SI Bachelor's 2 year of study, winter semester, compulsory
  • Programme BKC-SI Bachelor's 2 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Basic types of building and engineering structures. 2. Materials for civil structures. 3. Basic types of concrete, masonry, steel and timber structures. 4. Loading of building structure, load classification, kinds of loading actions, load cases and their combinations. 5. Basis of design and computer modelling of engineering structures. 6. Basis of structural design of buildings. 7. Concrete, steel and timber bridges and footbridges. 8. Transportation history, categorization, social aspects, transportation advantages and disadvantages. Transportation terminology and basic concepts. Alignment and profile of the line. 9. Roadway and motorway characteristics in CR. Structural and geometrical arrangement of road structures. 10. Urban road. 11. Technologies for road construction. Road types. 12. Permanent way and subgrade. 13. Railway stations. Airports.

Exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Basis of design and computer modelling of engineering structures. 2.–3. Basic types of building and engineering structures: basic types of concrete, masonry, steel and timber structures, concrete, steel and timber bridges and footbridges, basis of structural design of buildings. 4.–5. Materials for civil structures: basic building materials, their physical-mechanical properties, advantages and disadvantages. 6. Loading of building structures, load classification, load types and values, load cases and their combinations. 7. Basic terminology. Design both of road communications and railway lines. Alignment – design of road axis, circular curve. 8. Horizontal alignment – transition curve (clothoid), transitioned simple curve. 9. Vertical alignment – design of levelling. 10. Drawings – layout drawing, profile. 11. Road cathegories, road cross section. 12. Cross section of railway track, drainage, earthwork structures. 13. Final control of tasks elaborated.