Course detail
Dynamics
FAST-CD005Acad. year: 2022/2023
Assessment of civil engineering structures subjected to dynamic loads. Vibration theory fundamentals. Free vibration of single degree of freedom systems (SDOF). Experimental determination of fundamental natural frequency and damping factor. Response of SDOF systems to harmonic excitation. Response of SDOF systems to special forms of excitation and to general dynamic excitation. Frequency domain analysis. DFT, FFT. Mathematical models of continuous systems - axial and transverse vibration of elastic beams. Vibration of thin flat plate. Mathematical models of multi degree of freedoms (MDOF) systems. Application of Newton’s Laws to lumped-parameter models. Hamilton’s principle. Lagrange’s equations. Application of Lagrange’s equations to continuous systems. Free vibration of MDOF systems. Dynamic response by mode superposition method. The eigenvalue problem and numerical evaluation of modes and frequencies of MDOF systems. Dynamic analysis by finite element method (FEM). Element stiffness, damping, mass matrices and element force vector. Assembly of system Matrices. Vibration analysis employing FEM models. Direct integration methods for dynamic response. Response of systems to seismic excitation.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Foundations the theory vibration of civil engineering structures. Models with single degree of freedom system (SDOF).
3. Free Vibration. Response SDOF systems to specials form of excitation. Damping models.
4. Measurement of frequencies and damping. Response of SDOF to general type of action.
5. Numerical analysis of SDOF response. Frequency analysis. FFT.
6. Continuous computational models – tension and bending of beam. Modal analysis. Vibration of plates.
7. Newton law application. Hamilton principle.
8. Multi degree of freedom models. Lagrange equations.
9. Discrete and continuous models. Modal analysis of two degree of freedom models.
10. Response solution using mode superposition method. Rayleigh method.
11. Natural frequency and eigenvalue vectors characteristics. Rayleigh-Ritz method. General eigenvalues problem.
12. Dynamic analysis by finite element method (FEM). Element matrices. The global system of equations Systems matrices. Modal analysis. Direct integration equations of motion.
13. Response solution structures on seismic loads.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Exercise
Teacher / Lecturer
Syllabus