Course detail

Processes of transportation

FCH-DCO_TPDAcad. year: 2022/2023

Characterization of transport processes:
concepts, quantities and methods of study,
balance of physical properties.

Momentum transfer:
fundamental equations of momentum transfer: momentum balance, forces and tensor of tension,
laminar flow of isotropic viscous liquids, initial and boundary conditions, application of dimensional analysis and homothety theory on dynamic equations,
liquid properties: characterization of non-newtonian liquids, laminar flow of non-newtonian liquids.

Energy transfer:
fundamental equations of energy transfer - balance of fundamental quantities, heat transfer in incompressible liquid, initial and boundary conditions,
heat conduction - one-directional heat conduction (stationary and non-stationary), multidimensional heat conduction (stationary and non-stationary);
heat convection - application of dimensional analysis and homothety theory on Fourier-Kirchhoff equation, heat tranfer in forced convection,
thermal radiation - fundamental laws of radiation, radiation between bodies.

Mass transfer:
fundamental equations of mass transfer - n-component continuum, balance of fundamental quantities, initial and boundary conditions,
molecular mass transfer: concentration diffusion, thermodiffusion, barodiffusion, diffusion with chemical reaction,
mass convection - mass transfer coefficient, application of homothety theory on on mass balance.

Analogy between mass, heat and momentum transfers.

Language of instruction

Czech

Mode of study

Not applicable.

Learning outcomes of the course unit

Practice in derivation of mathematical desctription of transport phenomena in various systems

Prerequisites

basic knowledge of physical chemistry and mathematics

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course uses teaching methods in form of individual consultation. The e-learning system (LMS Moodle) is available to teachers and students.

Assesment methods and criteria linked to learning outcomes

electronic presentation - subject will be assigned by teacher

Course curriculum

1. Introduction. Characterization of transport processes and their relevance for real processes.
2. Balance of quantities characteristics for transport processes.
3. Momentum transfer.
4. Solution of problems of momentum transfer for different initial and boundary conditions.
5. Mass transfer.
6. Solution of problems of mass transfer for different initial and boundary conditions.
7. transport connected with chemical reaction.

Work placements

Not applicable.

Aims

The aim of the subject is to acquaint students with individual transport phenomena, to teach them the derivation of mathematical description of particular systems and the utilization of solutions published in literature.

Specification of controlled education, way of implementation and compensation for absences

none - only tutorials

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

BENNET, C.O., MYERS, J. E. Momentum, Heat and Mass Transfer. N. York: Mc. Graw-Hill, Inc., 1974. (CS)
BIRD, R. B., STEWART, W. E., LIGHTFOOT, E. N. Přenosové jevy. Praha: Academia, 1968. (CS)
KNUDSEN, J. G., KATZ, D. L. Fluid Dynamics and Heat Transfer. New York: McGraw-Hill Book , Inc., 1958. (CS)
SEIDEL, H., NEUŽIL, L.,FOŘT, I., VLČEK, J. Úvod do proudění tekutin a sdílení tepla. Praha: Academia, 1975. (CS)
SKELLAND, A. H. P. Non-newtonian Flow and Heat Transfer. New York: John Wiley, Inc., 1967. (CS)

Recommended reading

Not applicable.

Classification of course in study plans