Course detail
Structure and Properties of Materials
FEKT-MKC-SVMAcad. year: 2022/2023
Amorphous and crystalic state of materials. Microstructure and macrostructure of electrotechnical materials. Crystallography characterization. Complex permittivity; Inorganic dielectric, glass for electrotechnics. Electrotechnical ceramics. Plastics for electrotechnics. Ferroelectrics. Piezoelektrics. Electrets. Compounds materials. Semiconductor materials. Hall effect. Thermo-electric effect. Peltier effect. Magnetic condition of materials. Soft-magnetic and hard-magnetic materials.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- classify electrical materials from the point of view of their properties and usage,
- explain nature of physical phenomena that take place in the structure of electrical materials,
- describe physical phenomena that take place in the electrical materials mathematically,
- describe mutual relation between composition and structure of materials and resulting properties and possibilities of controlling of these properties,
- project optimal kinds of materials for production of electrical, electronic and microelectronic devices, as well as for applications in related technical and scientific fields.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
up to 60 points from written final exam
Final exam is focused on verification of knowledge and orientation in the field of electrical materials.
Course curriculum
Complex permittivity. Temperature influence and frequency of electric field on components complex permittivity
Inorganic dielectric materials, using in electrotechnics
Glass for electrotechnics, classification and sorts of glasses
Electrotechnical ceramics, production technology
Plastics for electrotechnics. Thermoplastic. Reactoplastic. Plastics with increased thermal immunity. Elastomers
Ferroelectrics, piezoelectrics, electrets and composite materials
Semiconductor materials. (temperature influence, concentration of adulterants and electric field on properties).
Hall effect. Thermo-electric effect, Peltier effect
Magnetic condition of materials. Diamagnetism, paramagnetism, fero- and ferri-magnetism. Soft-magnetic and hard-magnetic materials. Using in electrotechnics
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Mentlík, V. Dielektrické prvky a systémy, BEN, Praha 2006, ISBN 80-7300-189-6 (CS)
Recommended reading
Elearning
Classification of course in study plans
- Programme MPC-EVM Master's 1 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Non-traditional and heat-resistant plastics. Conducting composites.
Glass for electronics. Glass cements. Sintered glasses. Glass crystalline materials.
Ceramic for electronics. Ceramic superconductors. Piezoelectrics.
Compound semiconductors.
Amorphous semiconductors. Organic semiconductors. Semiconducting films.
Magnetic metal glasses. Materials for magnetic recording.
Materials for optoelectronics. Fibre optics.
High-purity materials for electronic and other purposes.
High-vacuum materials.
Materials for conversion of energy. Storage materials.
Bio-materials and bio-compatibility.
Materials and working environment.
Fundamentals seminar
Teacher / Lecturer
Syllabus
Composition and structure of organic and inorganic materials.
Properties of dielectrics, semiconductors and magnetic materials in electric, magnetic and thermic fields.
Piezoelectric properties of matter.
Optical properties of matter.
Compatibility of inorganic, organic and biological materials.
Laboratory exercise
Teacher / Lecturer
Syllabus
2) Electrical properties of dielectric and conducting composites.
3) Dielectric properties of ferroelectrics.
4) Properties of piezoelectric elements.
5) Temperature and frequency dependance of magnetic properties in ferro- and ferrimagnetics.
6) Losses of energy in dielectric and magnetic materials.
Elearning