Course detail

Digital Integrated Circuits

FEKT-MPC-DISAcad. year: 2022/2023

Distribution, forming and delaying of pulse signals. Electronic switches. Comparators and flipflops. Function generators. Principles and classification of digital circuits. Combinational and sequential digital circuits. Principles of programmable digital systems. Basic families of digital circuits (TTL, CMOS), rules for their use. Realization and functional verification of the circuits using modular system, computer aided simulation of analog and digital systems.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

The student is able to:
- Explain and design a digital system, implement basic combinational logic circuits;
- Apply the principles of designing digital circuits and systems;
- List the basic properties and types of digital circuits in a variety of technologies;
- Perform basic design of the generator rectangular oscillations;
- Describe the advantages and disadvantages of displays (LCD, OLED, plasma) and apply it to the design of electronic systems;
- Characterize the basic properties of memory circuits, categorize and explain the advantages and disadvantages of each type;
- Describe the various phenomena that are important for the activity of the transistor with floating gate memory with EPROM, FLASH and EEPROM;
- Describe the differences between the various methods of processing analog signals, characterize the advantages and disadvantages of each type of AD and DA converters;
- Is familiar with the basics of programmable logic devices and the VHDL language, can create simple applications of these circuits;

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Techning methods include lectures and mutually interlaced experimental forms, which consist of numerical exercises, computer laboratories and practical laboratories.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to make students familiar with digital integrated circuits and their blocks, with the use of laboratory instruments and with computer methods of simulation and analysis of digital circuits.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Adel S. Sedra, Kenneth C. Smith: Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 8thEdition, ISBN 9780190853464 (CS)
Collier, M. Digital Circuit Design: Principles and Practice, reateSpace Independent Publishing Platform; 1 edition (June 12, 2014),ISBN-10: 1499686900 (EN)
Hall, S.H., High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices 1st Edition, Wiley-IEEE Press; 1 edition (August 25, 2000), ISBN-10: 0471360902 (EN)

Recommended reading

BALCH, M.: Complete digital design. McGraw-Hill, 2003, ISBN 0-07-140927-0
WAKERLY, J.F.: Digital design - principles and practices. Prentice Hall, 2001, ISBN 0-13-089896-1

Elearning

Classification of course in study plans

  • Programme MPC-MEL Master's 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., compulsory

Teacher / Lecturer

Syllabus

Forming and delaying of pulse signals,linear transmission circuits of first and second order, diodes and transistors in pulse circuits,transistor switch.
Combinational integrated circuits, characteristics and capabilities.
Description and analysis of gate networks.
Design of combinational systems: two-level gate networks.
Design of combinational systems: multilevel gate networks.
Specification of sequential systems.
Sequential networks. Generators of rectangular and function signals.
Standard combinational modules. Arithmetic combinational modules and networks.
Standard sequential modules.
Programmable modules.
Register-transfer level (RTL) systems.
Data and control subsystems.
Specification and implementation of a microcomputer.

Exercise in computer lab

13 hod., compulsory

Teacher / Lecturer

Syllabus

Spectra of pulse signals (program MATHCAD).
Examples of analysis and design of electronic circuits (program PSpice).
Use of programmable logic devices - program VHDL.

Laboratory exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

Pulse signals and their propagation by linear circuits.
Shaping of pulse signals.
Semiconductor switches.
Analysis and synthesis of combinational logic circuits, hazards.
Synchronous systems, counter and state machines design.
Basic properties of digital integrated circuits.

Elearning