Course detail
Communication Systems in Industrial Automation
FEKT-MPC-KTAAcad. year: 2022/2023
The course focuses on communication subsystems in the field of automation technology, ie distributed control systems. Practical experience will be gained by students with RS-485 industrial communication systems as a typical representative of bus technology. Thei will also get familiar with selected Ethernet, Internet and wireless networks. Students will deepen their knowledge about open communications, standards and quasi-standards of industrial networks and their implementation with an emphasis on lower protocol layers. Students are also acquainted with the basic aspects of risk analysis as a basis for functional safety and cybersecurity.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- describe layers of the OSI model,
- explain "communication in real time",
- list and briefly describe some of the deterministic communication solutions,
- describe most distinguishing features of RS-232, RS-485, CAN, Modbus, Ethernet and Industrial Ethernet,
- explain basic principles of functional safety,
- briefly describe bacis security building blocks,
- discuss advantages and disadvantages of selected communication technologies,
- provide qualified guess on relevance of functional safety standards for a given application,
- based on given requirements select suitable communication technology for a given task.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
upto 70 (50+20) points from examination.
Examination has two compulsary parts - written part (5 questions 10 point each) and verbal part.
To qualify for verbal part it is necessary to gain at least 24 points from the written one, no two questions from the written part can be evaluated as zero. To pass the exam it is necessary to gain at least 10 point in the verbal part.
Exam is focused to evaluate general knowledge in the field of serial communication technologies, fieldbuses, functional safety and security.
Course curriculum
2. Functions of individual layers.
3. Communication cables, shielding, reflections on lines, bus termination methods
4. Lowest Interface, RS-232, RS-485.
5. Access methods.
6. CAN and Physical Layers (High Speed Can, CAN Single Wire CAN).
7. FD CAN, LIN
8. Ethernet
9. Industrial Ethernet and real-time communication methods
10. Wireless networks in automation
11. Risk, a brief introduction to rational risk management
12. Fundamentals of functional safety
13. Fundamentals of cyber security
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
- recommended co-requisite
Electromagnetic Field Modeling
Basic literature
Smejkal V.: Bezpečnostní aspekty Průmyslu 4.0, Data Security Management, Ročník XXII, č.3/2018 (dostupné elektronicky v IS VUT) (CS)
Zezulka et al., Automatizace procesů (elektronický text), kapitola 5, 2014 (CS)
Recommended reading
Classification of course in study plans
- Programme MPC-KAM Master's 1 year of study, summer semester, compulsory-optional
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Functions of individual layers.
3. Communication cables, shielding, reflections on lines, bus termination methods
4. Lowest Interface, RS-232, RS-485.
5. Access methods.
6. CAN and Physical Layers (High Speed Can, CAN Single Wire CAN).
7. FD CAN, LIN
8. Ethernet
9. Industrial Ethernet and real-time communication methods
10. Wireless networks in automation
11. Risk, a brief introduction to rational risk management
12. Fundamentals of functional safety
13. Fundamentals of cyber security
Laboratory exercise
Teacher / Lecturer
Syllabus
Physial layer RS 232, RS485
Utilization of industrial buses with PLCs
Ethernet
Prezentation of individual lab activities