Course detail
Production of Electrical Machines 1
FEKT-MPC-SS1Acad. year: 2022/2023
Magnetic field of m-phase winding, winding factors for fundamental and other harmonics of magnetic field, three-phase windings, parasitic torques and additional losses caused by harmonic components of the magnetic field, electromagnetic design of an induction motor and synchronous motor with permanent magnets, bearings of electric machines.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- describe the magnetic field in the air-gap generated by the coil and m-phase winding,
- calculate the winding factors for the first and other harmonics of magnetic field,
- design the single and double-layer windings, distributed and concentrated windings,
- describe the principle of parasitic torques and torque pulsation,
- describe the additional losses caused by harmonic components of the magnetic field,
- perform the electromagnetic design of an induction motor,
- perform the electromagnetic design of synchronous motor with permanent magnets,
- describe the bearings of electric machines, including magnetic bearings,
- prepare 2D FEM model of the induction motor and permanent magnet synchronous motor.
Prerequisites
- differentiate functions of one and more variables,
- integrate functions of one variable,
- compute a freguency spectrum of continuos periodic signal,
- explain electromagnetic basic principles, solve DC, AC electric circuits with lumped parameters and magnetic circuits,
- describe the construction of induction motor, synchronous motor and DC motor,
- describe motors principle according to their electrical diagram,
- describe, modify and apply the basic design approach of magnetic circuit and winding to the permanent magnet DC motor and BLDC motor,
- calculate the parameters of the permanent magnet DC motor, BLDC motor (steady-state operation),
- draw and describe the waveform of magnetic flux density in the air-gap of permanent magnet DC motor, BLDC motor; sketch the slotting effect and the armature reaction effect,
- prepare 2D FEM model of the permanent magnet DC motor, BLDC motor under steady-state operation.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Control test - maximum 10 points
Credit test - maximum 15 points
To pass credit it is necessary to gain at least 8 points in total for Control test + Credit test
Final Exam - maximum 75 points; to pass the exam it is necessary to gain at least 35 points.
Course curriculum
2. Induced voltage, winding factors for fundamental and other harmonics of magnetic field
3. Single-layer and double-layer concentrated windings
4. Stator and rotor slotting, slot harmonics
5. Origin and possibilities of suppression of parasitic torques and torque pulsation
6. Additional losses caused by harmonic components of the magnetic field
7. Electromagnetic design of an induction motor
8. Manufacturing of induction motor
9. Electromagnetic design of synchronous motor with permanent magnets
10. Bearings of electric machines, magnetic bearings
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
HELLER, B., HAMATA, V.: Přídavná pole, síly a ztráty v asynchronním stroji. 1. vyd. Praha: Československá akademie věd, 1961, 202 s. (CS)
PETROV, G.,N.: Elektrické stroje 2. Academia, Praha 1982 (CS)
Philip B.: Electrical Steels for Rotating Machines. Institution of Engineering and Technology, 2002. ISBN: 978-0852969809 (CS)
Recommended reading
CIGÁNEK,J.: Stavba elektrických strojů, SNTL 1958 (CS)
KOPYLOV,I.,P. a kol.: Stavba elektrických strojů. SNTL, Praha 1988, 688 stran, typové číslo L25-C3-IV-41f/58667, první vydání (CS)
Pyrhonen J., Jokinen T., Hrabovcova V.: Design of Rotating Electrical Machines. Wiley; 2nd edition, 2013. ISBN: 978-1118581575 (EN)
Elearning
Classification of course in study plans
- Programme MPC-SVE Master's 1 year of study, summer semester, compulsory
Type of course unit
Elearning